Iowa State, Ames Lab researcher develops new way to study single biological molecules

November 22, 2010

AMES, Iowa - Sanjeevi Sivasankar was looking for a better tool to study how cells adhere to each other.

Cells have surface proteins, called cadherins, that help them stick together. Different kinds of cells have different kinds of cadherins. The typical tools for observing and measuring those proteins focus on tens of thousands of them at a time - providing data on the average molecule in a sample, but not on a single molecule. Sivasankar, an Iowa State University assistant professor of physics and astronomy and an associate of the U.S. Department of Energy's Ames Laboratory, wanted to study them one at a time.

And so - as a post-doctoral researcher at Stanford University and the University of California, Berkeley, who worked with Steven Chu, the current U.S. Secretary of Energy and co-winner of the 1997 Nobel Prize in Physics - Sivasankar came up with the idea of developing and building a unique, single-molecule microscope.

"These fields are so technologically driven, you have to invent new stuff to discover new things," Sivasankar said.

The new idea was to combine two single-molecule technologies that had been used separately: atomic force microscope technology that manipulates molecules and measures forces; and fluorescence resonance energy transfer technology that observes single molecules at very high resolution.

Using one or the other technology is like "having hands but no eyes or eyes but no hands," said Sivasankar. "We can combine these two technologies into one instrument."

This type of instrument could advance studies in biomedical research, drug discovery, cancer diagnostics and bio-sensing applications.

Sivasankar brought the idea for an integrated, single-molecule instrument to Ames when he started at Iowa State and the Ames Laboratory in 2008. He's since built a laboratory prototype and improved its measurement capabilities and efficiency.

Sivasankar and his research group - Iowa State and Ames Laboratory post-doctoral researchers Hui Li and Sabyasachi Rakshit, plus Iowa State doctoral students Kristine Manibog and Chi-Fu Yen - spend about half their time developing the new instrument. The other half is spent on studies of single molecule biophysics.

Several of those studies are demonstrating the new microscope can be a valuable research tool.

The new instrument, for example, is advancing studies of cadherins and DNA, Sivasankar said. The researchers are also using it to study semiconducting nanocrystals in a research collaboration with Paul Alivisatos, the director of the Lawrence Berkeley National Laboratory in Berkeley, Calif.

Sivasankar said he expects discoveries based on data from the new microscope will soon be published in scientific journals.

As he tests and proves the instrument, Sivasankar will begin working with Novascan Technologies Inc. of Ames to continue development. Earlier this year, he won a $120,075 grant from the Grow Iowa Values Fund, a state economic development program, to support commercialization of the microscope. University startup funds and an award from the March of Dimes have also supported development of the microscope.

Novascan Technologies is a nanotechnology company with operations in the Iowa State University Research Park and downtown Ames. It was founded by Raj Lartius, a former Iowa State student and faculty member who's now the company's chief executive officer. For 12 years, it has developed and globally marketed single molecule instrumentation based on atomic force microscopy.

"We are very excited to be working with Dr. Sivasankar's lab," Lartius said. "This is a fantastic opportunity to integrate Novascan's latest Vertigo Force Measurement Systems with state-of-the-art optical techniques such as fluorescence resonance energy transfer technology."

Sivasankar said the immediate goal is to transform the microscope from its bulky, prototype stage to an instrument that's novel, compact, easy to use and can be manufactured at a competitive price.

"Without question this technology could greatly improve the ability to study the behavior of biological, chemical and other materials at the single molecule level," Lartius said.

Yes, Sivasankar said, "I think we can revolutionize the study of structural biology."
-end-


Iowa State University

Related Microscope Articles from Brightsurf:

Microscope lens inspired by lighthouse
Custom-fabricated lenses make it easy to attach high-tech microscopes directly to cell incubators.

Print your own laboratory-grade microscope for US$18
For the first time, labs around the world can 3D print their own precision microscopes, thanks to an open-source design created at Bath.

Novel high-speed microscope captures brain neuroactivities
A research team led by Dr. Kevin Tsia from the University of Hong Kong (HKU); and Professor Ji Na, from the University of California, Berkeley (UC Berkeley) has successfully recorded the millisecond electrical signals in the neurons of an alert mouse with their super high-speed microscope - two-photon fluorescence microscope.

Graphene forms under microscope's eye
Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope.

Hybrid microscope could bring digital biopsy to the clinic
By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era.

An ultrafast microscope for the quantum world
Processes taking place inside tiny electronic components or in molecules can now be filmed at a resolution of a few hundred attoseconds and down to the individual atom.

SLAP microscope smashes speed records
A new 2-photon microscope captures videos of the brain faster than ever, revealing voltage changes and neurotransmitter release.

New 3D microscope visualises fast biological processes better than ever
Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg have combined their expertise to develop a new type of microscope.

Use a microscope as a shovel? UConn researchers dig it
Using a familiar tool in a way it was never intended to be used opens up a whole new method to explore materials, report UConn researchers.

New method gives microscope a boost in resolution
Scientists at the University of W├╝rzburg have been able to boost current super-resolution microscopy by a novel tweak.

Read More: Microscope News and Microscope Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.