The puzzle of biological diversity

November 22, 2010

Biologists have long thought that interactions between plants and pollinating insects hasten evolutionary changes and promote biological diversity. However, new findings show that some interactions between plants and pollinators are less likely to increase diversity than previously thought, and in some instances, reduce it.

Findings, published in the Journal of Evolutionary Biology, show that local populations of one of the most distinctive plants in the Mojave Desert, the Joshua tree, are not as biologically diverse as would be expected. Joshua trees cannot produce seeds without specialized moths pollinating the tree's flowers. Previous research has shown that biological diversity exists among species of Joshua trees and their pollinating moths: Moth's with longer ovipositors, the part of the moth used to lay eggs, favor trees with large flowers while smaller moths species favor smaller flowers. Thus, biologists would expect the moths would adapt this trait to local flower populations and vice versa in order to reproduce. Yet using a combination of mathematical modeling and field studies, researchers observed little biological diversity among populations and thus no evidence that local populations of moths adapt to local populations of Joshua trees.

"We had previously observed two species of moths and have shown that the larger moth species uses large flowers and the smaller moth species uses smaller flowers. However, once we account for this difference, there no evidence that moths have adapted to flowers," said William Godsoe, the study's lead author and postdoctoral researcher at the National Institute for Mathematical and Biological Synthesis.

The observation is consistent with recent work from biologists at the University of Idaho who using a mathematical model determined that in some cases, interactions in nature don't increase diversity but instead reduce it. In a study published in The American Naturalist, University of Idaho biologists Jeremy Yoder and Scott Nuismer developed a mathematical model to compare how different interactions in nature affect biological diversity.

"The interactions we stimulated all change the evolution of the interacting species," said Yoder, who also co-authored the study on Joshua trees. "But different interactions can have very different effects - some increase diversity, some don't increase diversity at all, and some can even reduce diversity."

The Joshua tree study is a collaboration of theory and field work. "The pattern we're finding in the Joshua tree and moth data are exactly what we expect from the theory. Coevolution between Joshua tree and its pollinators acts to reduce the variation within species, which creates stronger contrasts between moth species and Joshua tree varieties," Yoder explained.
-end-
The National Institute for Mathematical and Biological Synthesis (NIMBioS) brings together researchers from around the world to collaborate across disciplinary boundaries to investigate solutions to basic and applied problems in the life sciences. NIMBioS is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture with additional support from The University of Tennessee, Knoxville.

Citations: Godsoe W, Yoder JB, Smith CI, Drummond CS, Pellmyr O. Absence of population-level-phenotype matching in an obligate pollination mutualism. Journal of Evolutionary Biology 23:2739-2746. http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2010.02120.x/abstract

Yoder JB, Nusimer SL. When does coevolution promote diversification? The American Naturalist 176:802-817. http://www.journals.uchicago.edu/doi/full/10.1086/657048

Image Credit: Christopher I. Smith/Willamette Univ.

Caption: New findings show that co-evolution between Joshua tree and its pollinator moths, such as the Tegeticula synthetica shown here, acts to reduces diversity within the species, rather than increase it as was previously thought.

National Institute for Mathematical and Biological Synthesis (NIMBioS)

Related Moths Articles from Brightsurf:

Moths strike out in evolutionary arms race with sophisticated wing design
Ultra-thin, super-absorbent and extraordinarily designed to detract attention, the wings of moths could hold the key for developing technological solutions to survive in a noisy world.

Airdropping sensors from moths
University of Washington researchers have created a sensor system that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination.

Air pollution renders flower odors unattractive to moths
Researchers from the Max Planck Institute for Chemical Ecology in Jena, Germany, and the University of Virginia, USA, showed that tobacco hawkmoths lost attraction to the scent of their preferred flowers when that scent had been altered by ozone.

Lyin' eyes: Butterfly, moth eyespots may look the same, but likely evolved separately
The iconic eyespots that some moths and butterflies use to ward off predators likely evolved in distinct ways, providing insights into how these insects became so diverse.

New species of moths discovered in the Alps named after three famous alpinists
During a genetic project of the Tyrolean State Museums in Innsbruck, Austrian entomologist and head of the Natural Science Collections Peter Huemer used an integrative research approach to study four long-known, yet controversial European moths.

Deaf moths evolved noise-cancelling scales to evade prey
Some species of deaf moths can absorb as much as 85 per cent of the incoming sound energy from predatory bats -- who use echolocation to detect them.

Moths' flight data helps drones navigate complex environments
The flight navigation strategy of moths can be used to develop programs that help drones to navigate unfamiliar environments, report Ioannis Paschalidis at Boston University, Thomas Daniel at University of Washington, and colleagues, in the open-access journal PLOS Computational Biology.

Moths and perhaps other animals rely on precise timing of neural spikes
By capturing and analyzing nearly all of the brain signals sent to the wing muscles of hawk moths (Manduca sexta), researchers have shown that precise timing within rapid sequences of neural signal spikes is essential to controlling the flight muscles necessary for the moths to eat.

Lazy moths taste disgusting
Researchers have noticed that some moths are nonchalant when attacked by predatory bats.

Research explores how grape pests sniff out berries
A new study, published Nov. 21 in the Journal of Chemical Ecology, investigates how these pests find their target amid a sea of other plants in the landscape.

Read More: Moths News and Moths Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.