NSF signs $34.5-million operating agreement as Antarctic neutrino detector nears completion

November 22, 2010

The National Science Foundation has signed a five-year, $34.5-million agreement with the University of Wisconsin-Madison to operate a unique telescope--a cubic kilometer in volume--buried in the Antarctic ice sheet between 1,400 meters and 2,400 meters deep.

The collaborative agreement covers the cost of operating the IceCube Neutrino Observatory, located in the ice under the U.S. Amundsen-Scott South Pole Station. The observatory records the rare collisions of neutrinos, elusive sub-atomic particles, with the atomic nuclei of the water frozen into ice. Neutrinos come from the sun, cosmic rays interacting with the Earth's atmosphere, and dramatic astronomical sources such as exploding stars in the Milky Way and other distant galaxies. Trillions of neutrinos stream through the human body at any given moment, but they rarely interact with regular matter, and researchers want to know more about them and where they come from.

IceCube is the world's largest neutrino detector. The size of the detector is important because it increases the number of potential collisions that can be observed, making neutrino astrophysics a reality. The observatory is slated for completion in December 2010.

While the Observatory is managed by the University of Wisconsin-Madison and primarily funded by the U.S. National Science Foundation, Germany, Belgium and Sweden contributed to its construction. More than 250 scientists from 36 institutions in the U.S., the partner countries, and elsewhere are now analyzing the data collected by the observatory.

"The IceCube detector is a superb example of the kind of exciting "big science" at the frontiers of knowledge that is ideally suited for support by the U.S. Antarctic Program, precisely because it could be built nowhere else in the world but in the Antarctic ice sheet," said Karl A. Erb, director of NSF's Office of Polar Programs (OPP). Through OPP, NSF manages the U.S. Antarctic Program, which coordinates all U.S. research on the southernmost continent and surrounding oceans.

"What's more," he added, "although the IceCube project is primarily funded by the National Science Foundation, it exemplifies a modern trend in the increasingly complex and multi-disciplinary scientific world; large-scale projects like the IceCube detector are too complex to be effectively mounted by one nation alone, but also require the scientific and logistical expertise of many nations acting together to produce scientifically significant results."

Since 2004, the U.S., Belgium, Germany and Sweden have been building the detector in the continental ice sheet that covers Antarctica to a depth of almost three kilometers in places. A powerful hot-water drill creates holes almost 2.5 kilometers deep into the ice. These holes house strings of digital optical modules that actually detect the interactions of the neutrinos with the ice.

Seven holes remained to be drilled in December 2010, which will bring the total to 86 strings.

Even now, the IceCube detector records several tens of thousands of neutrino interactions every year; the detector records one terabyte of data--more than 1,000 gigabytes--every day and over a petabyte of data--quadrillion bytes--per year. Data is meticulously examined for evidence of neutrino events.

The agreement with NSF covers the cost of operating the IceCube detector and managing the data it gathers in the U.S., enabling researchers to acquire the highest quality scientific data and store it for further distribution. IceCube's foreign collaborators also contribute to the detector's maintenance and operation through in-kind support and contributions to a common fund. The Madison-based IceCube Research Center transforms the detector's raw data to make it accessible for scientific analysis by the IceCube Collaboration.

"A secure, long-term funding plan is essential to a successful operations program. This award continues the strong partnership between NSF and UW that all of our collaborators depend upon," said IceCube Project Director Jim Yeck.

National Science Foundation

Related Neutrinos Articles from Brightsurf:

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

Physicists cast doubt on neutrino theory
University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments.

Exotic neutrinos will be difficult to ferret out
An international team tracking the 'new physics' neutrinos has checked the data of all the relevant experiments associated with neutrino detections against Standard Model extensions proposed by theorists.

Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.

Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.

Read More: Neutrinos News and Neutrinos Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.