Robojelly gets an upgrade

November 22, 2011

Engineers at Virginia Polytechnic Institute and State University (VirginiaTech) have developed a robot that mimics the graceful motions of jellyfish so precisely that it has been named Robojelly. Developed for the Office of Naval Research in 2009, this vehicle was designed to conduct ocean underwater surveillance, enabling it potentially to detect chemical spills, monitor the presence of ships and submarines, and observe the migration of schools of fish.

Recently, a team at VirginiaTech has improved the performance of this silicone swimmer, enabling it to better overcome the limitations of its artificial skin and better mimic the true motion of a jellyfish. Details on this new design and how it might provide new insights into jellyfish propulsion mechanisms will be presented at the 2011 meeting of the American Physical Society's Division of Fluid Dynamics in Baltimore, Md., Nov. 20-22.

According to VirginiaTech mechanical engineer Alex Villanueva, Robojelly looks very similar to an actual jellyfish. "Its geometry is copied almost exactly from a moon jellyfish [Aurelia aurita]," he said. The robot is built out of silicone and uses shape memory alloy (SMA) actuators to swim.

To move through the water, the natural animal uses the bell section of its body, which deforms and contracts to provide thrust. The lower, or lagging, section of the bell is known as the flexible margin, and it deforms slightly later in the swimming process than the rest of the bell. Until recently, however, Robojelly lacked this crucial piece of anatomy in its design.

Villanueva and his colleagues tested a number of different designs for their robot, some with and without an analog to a flexible margin. Initially, the artificial materials used in construction presented a problem. Unlike their natural counterparts, the artificial materials tended to fold as they deformed, reducing Robojelly's performance.

After testing a number of designs and lengths for the folding margin, the engineers discovered that cutting slots into the bell reduced this unwanted folding effect.

This gave Robojelly a truer swimming stroke, as well as a big boost in speed.

"These results clearly demonstrate that the flap plays an important role in the propulsion mechanism of Robojelly and provides an anatomical understanding of natural jellyfish," said Villanuerva.

The talk, "Effects of a flexible margin on Robojelly vortex structures," is at 3:05 p.m. on Tuesday, Nov. 22, 2011, in Room 324. Abstract: http://absimage.aps.org/image/MWS_DFD11-2011-001706.pdf
-end-
MORE MEETING INFORMATION

The 64th Annual DFD Meeting is hosted by the Johns Hopkins University, the University of Maryland, the University of Delaware and the George Washington University. Howard University and the U.S. Naval Academy are also participating in the organization of the meeting. It will be held at the Baltimore Convention Center, located in downtown Baltimore, Md. All meeting information, including directions to the Convention Center, is at: http://www.dfd2011.jhu.edu/index.html

USEFUL LINKS

Main Meeting Web Site: http://www.dfd2011.jhu.edu/index.html

Search Abstracts: http://meeting.aps.org/Meeting/DFD11/Content/2194

Directions and Maps: http://www.dfd2011.jhu.edu/venuemaps.html

PRESS REGISTRATION

Credentialed full-time journalists and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Charles Blue (cblue@aip.org, 301-209-3091).

SUPPORT DESK FOR REPORTERS

A media-support desk will be located in the exhibit area. Press announcements and other news will be available in the Virtual Press Room (see below).

VIRTUAL PRESS ROOM


The APS Division of Fluid Dynamics Virtual Press Room features news releases, graphics, videos, and other information to aid in covering the meeting on site and remotely. See: http://www.aps.org/units/dfd/pressroom/index.cfm

American Institute of Physics

Related Jellyfish Articles from Brightsurf:

Decaying jellyfish blooms can cause temporary changes to water column food webs
Decaying jellyfish blooms fuel the rapid growth of just a few specific strains of seawater bacteria, causing temporary changes to the water column food web.

Jellyfish with your chips?
Jellyfish could replace fish and chips on a new sustainable takeaway menu to help keep threatened species off the plate.

Jellyfish-inspired soft robots can outswim their natural counterparts
Engineering researchers have developed soft robots inspired by jellyfish that can outswim their real-life counterparts.

Jellyfish contain no calories, so why do they still attract predators?
New study shows that jellyfish are an important food source for many animals.

What makes a giant jellyfish's sting deadly
With summer on the way, and some beaches reopening after COVID-19 shutdowns, people will be taking to the ocean to cool off on a hot day.

Jellyfish help understand the timing of egg production
In animals, releasing eggs in a timely manner is vital to maximize the chances of successful fertilization.

Soft robot fingers gently grasp deep-sea jellyfish
Marine biologists have adopted ''soft robotic linguine fingers'' as tools to conduct their undersea research.

Stinging water mystery solved: Jellyfish can sting swimmers, prey with 'mucus grenades'
In warm coastal waters around the world, swimmers can often spot large groups of jellyfish pulsing on the seafloor.

How moon jellyfish get about
With their translucent bells, moon jellyfish (Aurelia aurita) move around the oceans in a very efficient way.

Jellyfish's 'superpowers' gained through cellular mechanism
Jellyfish are animals that possess the unique ability to regenerate body parts.

Read More: Jellyfish News and Jellyfish Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.