Transforming 'noise' into mechanical energy at nanometric level

November 22, 2012

In nature processes such as the movement of fluids, the intensity of electromagnetic signals, chemical compositions, etc., are subject to random fluctuations which normally are called 'noise'. This noise is a source of energy and its utilisation for undertaking a task is a paradigm that nature has shown to be possible in certain cases.

The research led by José Ignacio Pascual and published in Science, focused on a molecule of hydrogen (H2). The researchers placed the molecule within a very small space between a flat surface and the sharp point of an ultra-sensitive atomic force microscope. This microscope used the periodic movement of the point located at the end of a highly sensitive mechanical oscillator in order to 'feel' the forces that exist at a nanoscale level. The molecule of hydrogen moves randomly and chaotically and, when the point of the microscope approaches it, the point hits the molecule, making the oscillator or lever move. But this lever, at the same time, modulates the movement of the molecule, resulting in an orchestrated 'dance' between the point and the 'noisy' molecule. "The result is that the smallest molecule that exists, a molecule of hydrogen, 'pushes' the lever, that has a mass 1019 greater; ten trillion time greater!", explained José Ignacio Pascual.

The underlying principle is a mathematical theory known as Stocastic Resonance which describes how random movements of energy are channelled into periodic movements and, thus, can be harnessed. With this research, it has been shown that this principle is fulfilled at a nanometric scale.

"In our experiment, the 'noise' of the molecule is made by injecting electric current, and not temperature, through the molecule and, thus, functions like an engine converting electric energy into mechanical", stated José Ignacio Pascual. Thus, one of the most promising aspects of this result is that it can be applied to the design of artificial molecules, which are complex molecules designed to be able to oscillate or rotate in only one direction. The authors do not discard, moreover, that this molecular fluctuation can be produced by other sources, such as light, or be carried out with a greater number of molecules, even with different chemical compositions.

Elhuyar Fundazioa

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to