Einstein scientist receives $7.5 million grant for congenital heart disease research

November 22, 2016

Nov. 22, 2016 -- (BRONX, NY) -- The National Institutes of Health (NIH) has awarded Bernice Morrow, Ph.D., at Albert Einstein College of Medicine and collaborators at the Children's Hospital of Philadelphia (CHOP) a five-year, $7.5 million grant to study the genetics of congenital heart abnormalities.

Congenital heart disease affects four of every thousand live births, with most cases due to unknown causes. Dr. Morrow studies the genetics of a rare syndrome usually referred to as 22q11.2 deletion syndrome (22q11.2DS) because affected individuals are missing a portion of chromosome 22. Approximately 60 percent of patients with 22q11.2DS, also known as DiGeorge syndrome and velo-cardio-facial syndrome, have congenital heart disease, mostly of the conotruncal type (i.e., malformations of the cardiac outflow tract), which includes aortic arch anomalies. The deletion also causes several other abnormalities including immune deficiencies, mild craniofacial deformities and behavioral or intellectual disabilities. There is no cure for the disorder.

"One of our major goals is to discover why some individuals with 22q11.2DS have severe disease while others have mild presentations," says Dr. Morrow, director of translational genetics, professor of genetics and the Sidney L. and Miriam K. Olson Chair in Cardiology at Einstein. She also has appointments in obstetrics & gynecology and women's health and in pediatrics. Dr. Morrow and her CHOP collaborators have formed the International 22q11.2 Consortium and an International 22q11.2 Brain Behavior Consortium to increase the number of research samples available for studies of this syndrome. In this particular study, they will compare the genetic findings from patients with 22q11.2DS with those of congenital heart disease patients in the general population, to see if similar genetic risk factors are present in both groups.

Deletion of one particular gene in the deleted 22q11.2 region--TBX1--causes most of the physical abnormalities in the disorder. Those symptoms vary from mild to serious, and Dr. Morrow believes that DNA variations in other genes may influence disease severity. The NIH grant will enable her to track down these "modifier genes" specific for congenital heart disease to see how they interact with each other and with TBX1, using DNA from human subjects and mouse models of 22q11.2DS.

"We hope that this project will greatly expand our understanding of the genetic basis of congenital heart disease and lead to novel therapies and strategies for preventing these defects," she says.

The grant is titled "Developmental mechanisms of human congenital heart disease" (P01HD070454). Other Einstein investigators involved in this project include Bin Zhou, M.D., Ph.D., Deyou Zheng, Ph.D., Tao Wang, M.D., Ph.D., and Julie Secombe, Ph.D.
-end-
About Albert Einstein College of Medicine

Albert Einstein College of Medicine is one of the nation's premier centers for research, medical education and clinical investigation. During the 2016-2017 academic year, Einstein is home to 717 M.D. students, 166 Ph.D. students, 103 students in the combined M.D./Ph.D. program, and 278 postdoctoral research fellows .The College of Medicine has more than 1,900 full-time faculty members located on the main campus and at its clinical affiliates. In 2016, Einstein received more than $160 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in aging, intellectual development disorders, diabetes, cancer, clinical and translational research, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States through Montefiore and an affiliation network involving hospitals and medical centers in the Bronx, Brooklyn and on Long Island. For more information, please visit http://www.einstein.yu.edu/, read our blog, follow us on Twitter, like us on Facebook, and view us on YouTube.

Albert Einstein College of Medicine

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.