Cancer cells 'talk' to their environment, and it talks back

November 22, 2016

Interactions between an animal cell and its environment, a fibrous network called the extracellular matrix, play a critical role in cell function, including growth and migration. But less understood is the mechanical force that governs those interactions.

A multidisciplinary team of Cornell engineers and colleagues from the University of Pennsylvania have devised a method for measuring the force a cell -- in this case, a breast cancer cell -- exerts on its fibrous surroundings. Understanding those forces has implications in many disciplines, including immunology and cancer biology, and could help scientists better design biomaterial scaffolds for tissue engineering.

The group, led by Mingming Wu, associate professor in the Department of Biological and Environmental Engineering, developed 3-D traction-force microscopy to measure the displacement of fluorescent marker beads distributed in a collagen matrix. The beads are displaced by the pulling of migrating breast cancer cells embedded in the matrix. An important part of the puzzle was to calculate the force exerted by the cells using the displacement of the beads. That calculation was carried out by the team led by Vivek Shenoy, professor of materials science and engineering at the University of Pennsylvania.

The group's paper, "Fibrous nonlinear elasticity enables positive mechanical feedback between cells and extracellular matrices," published online Nov. 21 in Proceedings of the National Academy of Sciences. Matthew Hall, Ph.D. '16, now a postdoctoral researcher at the University of Michigan, is lead author and engineered the collagen matrices used in the study.

Wu -- who also was affiliated with the Cornell Center on the Microenvironment and Metastasis at Weill Cornell Medicine, which existed from 2009 through 2015 -- said her group's work centered on a basic question: How much force do cells exert on their extracellular matrix when they migrate?

"The matrix is like a rope, and in order for the cell to move, they have to exert force on this rope," she said. "The question arose from cancer metastasis, because if the cells don't move around, it's a benign tumor and generally not life-threatening."

It's when the cancerous cell migrates that serious problems can arise. That migration occurs through "cross-talk" between the cell and the matrix, the group found. As the cell pulls on the matrix, the fibrous matrix stiffens; in turn, the stiffening of the matrix causes the cell to pull harder, which stiffens the matrix even more.

This increased stiffening also increases cell force transmission distance, which can potentially promote metastasis of cancer cells.

"We've shown that the cells are able to align the fibers in their vicinity by exerting force," Hall said. "We've also shown that when the matrix is more fibrous - less like a continuous material and more like a mesh of fibers - they're able to align the fibers through the production of force. And once the fiber is aligned and taut, it's easier for cells to pull on them and migrate."

"I'm a strong believer that every new science discovery goes hand-in-hand with new technology development," she said. "And with every new tool, you discover something new."
-end-
This research was supported by grants from the National Institutes of Health, the National Cancer Institute and the National Science Foundation, and made use of the Cornell NanoScale Science and Technology Facility, the Cornell Biotechnology Resource Center Imaging Facility, the Cornell Center for Materials Research and the Cornell Nanobiotechnology Center.

Cornell University

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.