Nav: Home

Compounds emitted by phytopathogen microbes encourage plant growth

November 22, 2016

A wide range of microorganisms, including fungi and phytopathogenic bacteria, are capable of emitting volatile compounds which boost plant growth and flowering, and in accumulating up reserves as demonstrated in a study led by scientific researchers at Navarra's Institute of Agro biotechnology, in northern Spain, which is a mixed centre shared between Spain's National Research Council (CSIC), the Public University of Navarra, and the Regional Government of Navarra.

The discovery could have applications in sustainably improving crop yields as an alternative to conventional agrochemicals and in encouraging the interaction between plants. In addition, it will help in reducing the number of strains of beneficial micro-organisms. The results appear in two articles in the magazines Plant Cell and Environment, and Plant Physiology.

"This study puts forward for the first time the 'bad little critters, beneficial workers' concept, according to which non-beneficial microorganisms constitute an untapped and favourable pool of bio-stimulants with a high biotechnological potential", explains Javier Pozueta, CSIC investigator at the Institute of Agro-biotechnology.

Furthermore, the articles gather the results from projects carried out into biochemical and molecular mechanisms involved in the 'positive' response in plants to volatile compounds emitted by microorganisms which, from an anthropocentric standpoint, are considered to be 'negative' or 'non-beneficial'.

Such studies demonstrate that microbial compounds have a positive effect on the capacity of a plant to convert CO2 from the air into biomass. The work is consistent with the idea that organisms are related to, or communicate with, themselves using 'info-chemicals', or messenger substances.

The findings constitute a valuable source of study given the growing demand for food which has arisen as a consequence of the increase in the world population as well as the progressive reduction in arable farmland.
-end-
The work has been a collaboration between researchers from the Haná Regional Centre for Biotechnological and Agricultural Research at the University of Palacký, in the Czech Republic. It falls under the i-LINK+ programme's international I-LINK 0939 project programme collaboration framework, and is funded by CSIC, to promote international scientific collaboration.

Spanish National Research Council (CSIC)

Related Microorganisms Articles:

Lost in translation: Organic matter cuts plant-microbe links
Soil scientists from Cornell and Rice Universities have dug around and found that although adding carbon organic matter to agricultural fields is usually advantageous, it may muddle the beneficial underground communication between legume plants and microorganisms.
Montana State researcher harnesses microorganisms to make living building materials
Chelsea Heveran, assistant professor in the Department of Mechanical and Industrial Engineering, is the lead author of a new study showing that certain bacteria can be used to create an easily recyclable, concrete-like substance.
Crop residues are a potential source of beneficial microorganisms and biocontrol agents
While studies of the microbiomes (which comprises all the microorganisms, mainly bacteria and fungi) of the phyllosphere and the rhizosphere of plants are important, scientists at INRA believe more attention should be given to the microbiomes of crop residues.
Soil scientist researches nature versus nurture in microorganisms
Ember Morrissey, assistant professor of environmental microbiology at West Virginia University, uncovered that nature significantly affects how the tiny organisms under our feet respond to their current surroundings.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.
How microorganisms protect themselves against free radicals
There are numerous different scenarios in which microorganisms are exposed to highly reactive molecules known as free radicals.
Scientists' warning to humanity: Microbiology and climate change
When it comes to climate change, ignoring the role of microorganisms could have dire consequences, according to a new statement issued by an international team of microbiologists.
Climate change could affect symbiotic relationships between microorganisms and trees
An international research consortium mapped the global distribution of tree-root symbioses with fungi and bacteria that are vital to forest ecosystems.
Microorganisms on microplastics
A recent study shows that that the potentially toxin-producing plankton species Pfiesteria piscicida prefers to colonize plastic particles, where they are found in 50 times higher densities than in the surrounding water of the Baltic Sea and densities about two to three times higher than on comparable wood particles floating in the water.
More Microorganisms News and Microorganisms Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.