Novel type of cell death in Huntington's disease may lead to effective new therapies

November 22, 2016

Researchers centered at Tokyo Medical and Dental University (TMDU) identify novel type of cell death in Huntington's disease that may uncover new treatments.

Tokyo - In Huntington's disease (HD), the huntingtin gene is mutated, causing progressive neuronal death. This leads to defects in movement, behavior, and cognitive ability. Apoptosis, autophagy, and necrosis are the three main types of cell death, but researchers have not yet been able to determine what type of cell death causes neurodegeneration in the brain of HD patients.

In a new study, Tokyo Medical and Dental University-led researchers examined the nature of cell death in HD using newly developed imaging techniques. The effects of mutant huntingtin in neuronal cells were visualized by live cell imaging. With this approach, the authors identified a novel type of cell death associated with mutant huntingtin, which they called ballooning cell death (BCD). These cells gradually expanded like a balloon, until they ruptured.

To characterize the specific nature of BCD, the authors examined different cellular organelles by live cell imaging. "The endoplasmic reticulum was the main origin of ballooning," study first author Ying Mao explains. "Rupture of the endoplasmic reticulum into the cytosol was followed by gradual cell body ballooning, nuclear shrinkage, and cell rupture."

The authors observed the same phenomena in vivo using two-photon endoplasmic reticulum imaging in a HD mouse model.

Pharmacological inhibitors and genetic interventions showed that BCD was not like apoptosis or autophagy. "We noticed multiple similarities between BCD and a unique form of necrosis called TRIAD, which is caused by inhibition of RNA polymerase II in neurons," corresponding author Hitoshi Okazawa explains. "Based on our existing knowledge of how TRIAD is regulated, we were able to show that BCD is mediated by impaired TEAD/YAP transcription."

These revelations provided the opportunity to test potential therapeutic targets for HD. The researchers introduced S1P and up-regulated TEAD/YAP transcription in HD mice. This stabilized endoplasmic reticulum and completely stopped the decline of motor function, suggesting that targeting TEAD/YAP-dependent necrosis may lead to development of effective therapies for HD.
-end-
The article "Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington's disease pathology" was published in Human Molecular Genetics at doi: 10.1093/hmg/ddw303

Tokyo Medical and Dental University

Related Cell Death Articles from Brightsurf:

Cell death in porpoises caused by environmental pollutants
Environmental pollutants threaten the health of marine mammals. This study established a novel cell-based assay using the fibroblasts of a finless porpoise stranded along the coast of the Seto Inland Sea, Japan, to better understand the cytotoxicity and the impacts of environmental pollutants on the porpoise population.

Gold nanoparticles to save neurons from cell death
An international research team coordinated by Istituto Italiano di Tecnologia in Lecce (Italy) has developed gold nanoparticles able to reduce the cell death of neurons exposed to overexcitement.

New light shone on inflammatory cell death regulator
Australian researchers have made significant advances in understanding the inflammatory cell death regulatory protein MLKL and its role in disease.

Silicones may lead to cell death
Silicone molecules from breast implants can initiate processes in human cells that lead to cell death.

New players in the programmed cell death mechanism
Skoltech researchers have identified a set of proteins that are important in the process of apoptosis, or programmed cell death.

Tumors hijack the cell death pathway to live
Cancer cells avoid an immune system attack after radiation by commandeering a cell signaling pathway that helps dying cells avoid triggering an immune response, a new study led by UTSW scientists suggests.

How trans fats assist cell death
Tohoku University researchers in Japan have uncovered a molecular link between some trans fats and a variety of disorders, including cardiovascular and neurodegenerative diseases.

Bacteria can 'outsmart' programmed cell death
To be able to multiply, bacteria that cause diarrhoea block mediators of programmed cell death, a new study in 'Nature Microbiology' shows.

Cell death or cancer growth: A question of cohesion
Activation of CD95, a receptor found on all cancer cells, triggers programmed cell death -- or does the opposite, namely stimulates cancer cell growth.

Cell death blocker prevents healthy cells from dying
Researchers have discovered a proof-of-concept drug that can prevent healthy cells from dying in the laboratory.

Read More: Cell Death News and Cell Death Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.