Nav: Home

Mount Sinai researchers use computer algorithms to diagnose HCM from echos

November 22, 2016

Computer algorithms can automatically interpret echocardiographic images and distinguish between pathological hypertrophic cardiomyopathy (HCM) and physiological changes in athletes' hearts, according to research from the Icahn School of Medicine at Mount Sinai (ISMMS), published online yesterday in the Journal of the American College of Cardiology.

HCM is a disease in which a portion of the myocardium enlarges, creating functional impairment of the heart. It is the leading cause of sudden death in young athletes. Diagnosing HCM is challenging since athletes can present with physiological hypertrophy, in which their hearts appear large, but do not feature the pathological abnormality of HCM. The current standard of care requires precise phenotyping of the two similar conditions by a highly trained cardiologist.

"Our research has demonstrated for the first time that machine-learning algorithms can assist in the discrimination of physiological versus pathological hypertrophic remodeling, thus enabling easier and more accurate diagnoses of HCM," said senior study author Partho P. Sengupta, MD, Director of Cardiac Ultrasound Research and Professor of Medicine in Cardiology at the Icahn School of Medicine at Mount Sinai. "This is a major milestone for echocardiography, and represents a critical step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images. This could help novice echo readers with limited experience, making the diagnosis rapid and more widely available."

Using data from an existing cohort of 139 male subjects who underwent echocardiographic imaging at ISMMS (77 verified athlete cases and 62 verified HCM cases), the researchers analyzed the images with tissue tracking software and identified variable sets to incorporate in the machine-learning models. They then developed a collective machine-learning model with three different algorithms to differentiate the two conditions. The model demonstrated superior diagnostic ability comparable to conventional 2D echocardiographic and Doppler-derived parameters used in clinical practice.

"Our approach shows a promising trend in using automated algorithms as precision medicine techniques to augment physician-guided diagnosis," said study author Joel Dudley, PhD, Director of the Institute for Next Generation Healthcare and Director of the Center for Biomedical Informatics at ISMMS. "This demonstrates how machine-learning models and other smart interpretation systems could help to efficiently analyze and process large volumes of cardiac ultrasound data, and with the growth of telemedicine, it could enable cardiac diagnoses even in the most resource-burdened areas."
-end-
The team included researchers from both Dr. Sengupta's and Dr. Dudley's labs, including medical student Sukrit Narula, Khader Shameer, PhD, and Alaa Mabrouk Salem Omar, MD, PhD. The team is now in the process of developing other artificial intelligence-powered cardiovascular phenotyping algorithms to deploy to help clinicians, echocardiography technicians, and medical students to make diagnoses.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services--from community-based facilities to tertiary and quaternary care.

The System includes approximately 7,100 primary and specialty care physicians; 12 joint-venture ambulatory surgery centers; more than 140 ambulatory practices throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and 31 affiliated community health centers. Physicians are affiliated with the renowned Icahn School of Medicine at Mount Sinai, which is ranked among the highest in the nation in National Institutes of Health funding per investigator. The Mount Sinai Hospital is in the "Honor Roll" of best hospitals in America, ranked No. 15 nationally in the 2016-2017 "Best Hospitals" issue of U.S. News & World Report. The Mount Sinai Hospital is also ranked as one of the nation's top 20 hospitals in Geriatrics, Gastroenterology/GI Surgery, Cardiology/Heart Surgery, Diabetes/Endocrinology, Nephrology, Neurology/Neurosurgery, and Ear, Nose & Throat, and is in the top 50 in four other specialties. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 10 nationally for Ophthalmology, while Mount Sinai Beth Israel, Mount Sinai St. Luke's, and Mount Sinai West are ranked regionally. Mount Sinai's Kravis Children's Hospital is ranked in seven out of ten pediatric specialties by U.S. News & World Report in "Best Children's Hospitals."

For more information, visit http://www.mountsinai.org/, or find Mount Sinai on Facebook, Twitter and YouTube.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Algorithms Articles:

New algorithm can distinguish cyberbullies from normal Twitter users with 90% accuracy
A team of researchers, including faculty at Binghamton University, have developed machine learning algorithms which can successfully identify bullies and aggressors on Twitter with 90 percent accuracy.
AI learns complex gene-disease patterns
A deep learning model improves the ability to identify genes potentially involved in disease.
New brain map could improve AI algorithms for machine vision
An international team of researchers led by neuroscientists from CSHL and University of Sydney published an updated view on the primate brain's visual system organization, and they found that parts of the primate visual system may work differently than previously thought.
Two new algorithms can identify patients at risk of HIV
Two new studies developed algorithms that can identify patients who are at risk of acquiring HIV and may benefit from preventive care.
Scientists stack algorithms to improve predictions of yield-boosting crop traits
To help researchers better predict high-yielding crop traits, a team from the University of Illinois have stacked together six high-powered, machine learning algorithms that are used to interpret hyperspectral data -- and they demonstrated that this technique improved the predictive power of a recent study by up to 15 percent, compared to using just one algorithm.
More Algorithms News and Algorithms Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...