Spray-printed crystals to move forward organic electronic applications

November 22, 2016

Has the time come to replace traditionally used silicon with printable organic semiconductor inks? University of Surrey scientists believe so, especially for future electronics that need to be flexible, lightweight, wearable and low-cost.

Single crystal semiconductors, such as silicon, have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt at very high temperatures, in special chambers filled with inert gas, using time-consuming and energy intensive processes. A new class of crystalline materials, called organic semiconductors, can also be grown as single crystals, but in a very different way, using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics, targeting numerous applications ranging from field effect transistors and light emitting diodes to medical x-ray detectors and miniature lasers.

New research, published today in Nature Communications, conducted by a team of researchers from the University of Surrey and National Physical Laboratory, demonstrates for the first time a low-cost, scalable spray-printing process to fabricate high-quality isolated organic single crystals. The method is suitable for a wide variety of semiconducting small molecules, which can be dissolved in solvents to make semiconducting inks, and then be deposited on virtually any substrate. The key aspect is in combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are then controlled by the spay angle and distance to the substrate, which govern the spray droplets' impact onto the antisolvent's surface. These crystals are high quality structures, as confirmed by a combination of characterisation techniques, including polarised optical and scanning electron microscopy, x-ray diffraction, polarised Raman spectroscopy and field-effect transistor tests.

The research has a direct impact on printed electronic applications for flexible circuits, advanced photodetector arrays, chemical and biological sensors, robotic skin tensile sensors, x-ray medical detectors, light emitting transistors and diodes, and miniature lasers

"This method is a powerful, new approach for manufacturing organic semiconductor single crystals and controlling their shape and dimensions," said Dr Maxim Shkunov from the Advanced Technology Institute at the University of Surrey.

"If we look at silicon, it takes almost 15000C to grow semiconductor grade crystals, while steel spoons will melt at this temperature, and it will fetch a very hefty electric bill for just 1 kg of silicon, same as for running a tea kettle for over 2 days non-stop. And then, you would need to cut and polish those silicon 'boules' into wafers.

"We can make single crystals in a much simpler way, entirely at room temperature with a £5 artist spray brush. With a new class of organic semiconductors based on carbon atoms, we can spray-coat organic inks onto anything, and get more or less the right size of crystals for our devices right away."

Dr Maxim Shkunov, lead author of the research, continued: "The trick is to cover the surface with a non-solvent so that semiconductor molecules float on top and self-assemble into highly ordered crystals. We can also beat silicon by using light emitting molecules to make lasers, for example, - something you can't do with traditional silicon. This molecular crystals growth method opens amazing capabilities for printable organic electronics."
-end-
More details on organic single crystals characterisation can be found in: http://www.nature.com/articles/srep33057

University of Surrey

Related Silicon Articles from Brightsurf:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.

Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.

A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.

2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.

Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.

Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.

Read More: Silicon News and Silicon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.