Nav: Home

Single enzyme controls 2 plant hormones

November 22, 2016

Scientists at Washington University in St. Louis isolated an enzyme that controls the levels of two plant hormones simultaneously, linking the molecular pathways for growth and defense.

Similar to animals, plants have evolved small molecules called hormones to control key events such as growth, reproduction and responses to infections. Scientists have long known that distinct plant hormones can interact in complex ways, but how they do so has remained mysterious.

In a paper published in the Nov. 14 issue of Proceedings of the National Academy of Sciences, the research team of Joseph Jez, professor of biology in Arts & Sciences and a Howard Hughes Medical Institute Professor, reports that the enzyme GH3.5 can control the levels of two plant hormones, auxin and salicylic acid. It is the first enzyme of its kind known to control completely different classes of hormones.

Auxin controls a range of responses in the plant, including cell and tissue growth and normal development. Salicylic acid, on the other hand, helps plants respond to infections, which often take resources away from growth. Plants must tightly control the levels of auxin and salicylic acid to properly grow and react to new threats.

"Plants control hormone levels through a combination of making, breaking, modifying and transporting them," said Corey Westfall, a former graduate student who led this Jez lab work along with current graduate student Ashley Sherp.

By stitching an amino acid to a hormone, GH3.5 takes the hormones out of circulation, reducing their effect in the plant.

Although scientists suspected GH3.5 controlled auxin and salicylic acid, this double action had not been demonstrated in plants.

"Our question was really simple," Sherp said. "Can this enzyme actually control multiple hormones? And if that's true in a test tube, what happens back in a plant?"

To find out, the researchers induced plants to accumulate large amounts of the protein and then measured their levels of hormones. When GH3.5 was expressed at high levels, the amounts of both auxin and salicylic acid were reduced. Deprived of growth-promoting auxin, the plants stayed small and stunted.

The experiment proved that GH3.5 does regulate distinct classes of hormones, but how does it do this?

Searching for answers with X-rays

To better understand how the enzyme could control both auxin and salicylic acid, the scientists crystallized GH3.5 and sent the crystals to the European Synchrotron Radiation Facility in Grenoble, France.

The particle accelerator there helped the researchers to fire powerful X-rays into the protein crystal, and the diffraction of the X-rays provided information about the atom-by-atom structure of the enzyme. Westfall assembled this data into a three-dimensional reconstruction of GH3.5, showing it frozen in the act of modifying auxin.

The scientists were expecting to find key differences between GH3.5 and related proteins that would account for its unique ability to modify multiple hormones.

To their surprise, the part of the enzyme that binds and modifies hormones looked almost identical to related enzymes that can only modify auxin. The surprising similarities between the multi-purpose GH3.5 and its single-use relatives suggests that unrecognized elements of these proteins influence which molecules they can bind and transform.

"These surprising results mean there's something going on that we're not seeing in the sequence or the structure of these enzymes," Jez said.

Solving this mystery could tell us more about how enzymes distinguish among similar molecules, a discriminatory ability that is critical for all life, including people as well as plants.
-end-


Washington University in St. Louis

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...