Nav: Home

Single enzyme controls 2 plant hormones

November 22, 2016

Scientists at Washington University in St. Louis isolated an enzyme that controls the levels of two plant hormones simultaneously, linking the molecular pathways for growth and defense.

Similar to animals, plants have evolved small molecules called hormones to control key events such as growth, reproduction and responses to infections. Scientists have long known that distinct plant hormones can interact in complex ways, but how they do so has remained mysterious.

In a paper published in the Nov. 14 issue of Proceedings of the National Academy of Sciences, the research team of Joseph Jez, professor of biology in Arts & Sciences and a Howard Hughes Medical Institute Professor, reports that the enzyme GH3.5 can control the levels of two plant hormones, auxin and salicylic acid. It is the first enzyme of its kind known to control completely different classes of hormones.

Auxin controls a range of responses in the plant, including cell and tissue growth and normal development. Salicylic acid, on the other hand, helps plants respond to infections, which often take resources away from growth. Plants must tightly control the levels of auxin and salicylic acid to properly grow and react to new threats.

"Plants control hormone levels through a combination of making, breaking, modifying and transporting them," said Corey Westfall, a former graduate student who led this Jez lab work along with current graduate student Ashley Sherp.

By stitching an amino acid to a hormone, GH3.5 takes the hormones out of circulation, reducing their effect in the plant.

Although scientists suspected GH3.5 controlled auxin and salicylic acid, this double action had not been demonstrated in plants.

"Our question was really simple," Sherp said. "Can this enzyme actually control multiple hormones? And if that's true in a test tube, what happens back in a plant?"

To find out, the researchers induced plants to accumulate large amounts of the protein and then measured their levels of hormones. When GH3.5 was expressed at high levels, the amounts of both auxin and salicylic acid were reduced. Deprived of growth-promoting auxin, the plants stayed small and stunted.

The experiment proved that GH3.5 does regulate distinct classes of hormones, but how does it do this?

Searching for answers with X-rays

To better understand how the enzyme could control both auxin and salicylic acid, the scientists crystallized GH3.5 and sent the crystals to the European Synchrotron Radiation Facility in Grenoble, France.

The particle accelerator there helped the researchers to fire powerful X-rays into the protein crystal, and the diffraction of the X-rays provided information about the atom-by-atom structure of the enzyme. Westfall assembled this data into a three-dimensional reconstruction of GH3.5, showing it frozen in the act of modifying auxin.

The scientists were expecting to find key differences between GH3.5 and related proteins that would account for its unique ability to modify multiple hormones.

To their surprise, the part of the enzyme that binds and modifies hormones looked almost identical to related enzymes that can only modify auxin. The surprising similarities between the multi-purpose GH3.5 and its single-use relatives suggests that unrecognized elements of these proteins influence which molecules they can bind and transform.

"These surprising results mean there's something going on that we're not seeing in the sequence or the structure of these enzymes," Jez said.

Solving this mystery could tell us more about how enzymes distinguish among similar molecules, a discriminatory ability that is critical for all life, including people as well as plants.
-end-


Washington University in St. Louis

Related Protein Articles:

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.
A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.
A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.