Strong hosts help parasites spread farther

November 22, 2017

Large, physically strong Masu salmon disperse farther when infected with parasites, potentially escaping from further infections at the contaminated site but ironically resulting in the greater expansion of the parasite, according to Hokkaido University researchers.

Infected hosts are the "vehicle" of sluggish parasites, and their dispersal behavior largely determines the extent parasites spread in nature. Dispersal is thought to be a rational behavior for infected hosts to escape from a parasite-contaminated habitat and avoid further infections. However, escaping from the contaminated habitat involves the alternative risk of using up energy and encountering natural enemies. How do infected hosts cope with this dilemma?

Researchers from Hokkaido University and the Hokkaido Research Organization hypothesized that only large, physically strong individuals may travel long distances to flee from a parasite, because the escape process is too risky for small, physically weak individuals.

To test this hypothesis, the researchers focused on the larval parasite of the freshwater mussel Margaritifera laevis, whose infection process is simple and experimentally controllable. Margaritifera laevis becomes parasitic on the gills of young Masu salmon (Oncorhynchus masou masou) after being released by its mother as larvae. The larvae infect the salmon for approximately 50 days, during which the parasites suck the host's blood and travel on the host to different locations. After their parasitic period, they develop into young mussels and start living at the bottom of mountain streams, expanding the species' distribution.

The researchers captured, marked and released 215 young Masu salmon into a part of the Osatsu stream (Hokkaido, Japan), half of which had been artificially infected with the larval parasite. They observed fish dispersal behavior in a 1,200-meter section of the stream and investigated how this changed according to their infection status and body size. The researchers also made a numerical simulation model to investigate how the dispersal of young Masu salmon would affect the persistence and expansion of the parasite.

As predicted, the experiments showed that large, physically stronger fish traveled farther while smaller fish tended to stay where they were; however, this dispersal behavior was not observed for uninfected fish. Thus, the team inferred the behavior was caused by the infection of the fish hosts. Importantly, this dispersal behavior that potentially favors the survival of "infected fish" resulted in undesired consequences for the "fish population" as a whole, including for uninfected fish. In their simulations, parasite populations persisted four times longer and invaded areas six times wider with the aid of the host's behavior. "The rational behavior of the larger salmon may have helped expand the infection area while smaller ones keep the infected habitat infectious," says Akira Terui of the research team.

"Although individual Masu salmon seem to behave rationally, their actions have ironically resulted in the long-term persistence and greater expansion of its parasite. Further research on the species and other host-parasite relationships could help predictions of how diseases spread in wild animals," Terui added.

Hokkaido University

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to