Droplet explosion by shock waves, relevant to nuclear medicine

November 22, 2017

An arrow shooting through an apple, makes for a spectacular explosive sight in slow motion. Similarly, energetic ions passing through liquid droplets induce shock waves, which can fragment the droplets. In a study published in EPJ D, Eugene Surdutovich from Oakland University, Rochester, Michigan, USA with his colleagues from the MBN Research Centre, Frankfurt, Germany have proposed a solution to observe the predicted ion-induced shock waves. They believe these can be identified by observing the way incoming ions fragment liquid droplets into multiple smaller droplets. The discovery of such shock waves would change our understanding of the nature of radiation damage with ions to cancerous tumour. This matters for the optimisation of ion-beam cancer therapy, which requires a thorough understanding of the relation between the physical characteristics of the incoming ion beam and its effects on biological tissues.

In nuclear medicine, ion beams - using protons and carbon ions--have been used clinically in the radiotherapy treatment of cancer tumours since the 1990s. Unlike X-rays, their ability to penetrate the body and release a peak of energy commensurate with the energy of the incoming ions at a desired location makes them ideal for targeting deeply-seated tumours.

The predicted shock waves significantly contribute to the thermomechanical damage deliberately inflicted on tumour tissue. Specifically, the collective flow intrinsic to the shock waves helps to propagate biologically harmful reactive species, such as free radicals, stemming from the ions. This mechanism increases the volume of tumour cells exposed to reactive species.

In the presence of shock waves, the authors show that, within 100 picoseconds, a droplet hit by an ion gets fragmented into much smaller droplets if its radius is somewhere between 30 and 1000 nanometres. This work suggests a way to directly observe these shock waves experimentally.
Reference: E. Surdutovich, A Verkhovtsev , and A. V. Solov'yov (2017), Ion-impact-induced multifragmentation of liquid droplets, European Physical Journal D 71: 285, DOI: 10.1140/epjd/e2017-80121-y


Related Nuclear Medicine Articles from Brightsurf:

Nuclear medicine and COVID-19: New content from The Journal of Nuclear Medicine
In one of five new COVID-19-related articles and commentaries published in the June issue of The Journal of Nuclear Medicine, Johnese Spisso discusses how the UCLA Hospital System has dealt with the pandemic.

Story tips: Shuffling atoms, thinning forests, fusion assembly and nuclear medicine
ORNL Story Tips: Shuffling atoms, thinning forests, fusion assembly and nuclear medicine.

Global nuclear medicine community shares COVID-19 strategies and experiences
In an effort to provide safer working environments for nuclear medicine professionals and their patients, clinics across five continents have shared their approaches to containing the spread of COVID-19 in a series of editorials, published ahead of print in The Journal of Nuclear Medicine.

Influence of the Journal of Nuclear Medicine jumps 25%
The Journal of Nuclear Medicine again ranks among the top 5 medical imaging journals in the world.

Nuclear medicine PSMA-targeted study offers new options for cancer theranostics worldwide
Research presented at the 2019 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) describes a new class of radiopharmaceuticals, named radiohybrids (rh), that offer a fresh perspective on cancer imaging and radioligand therapy (theranostics).

Nuclear medicine imaging monitors effectiveness of therapy for melanoma patients
Nuclear medicine imaging with PET/CT can monitor the effectiveness of immunotherapy treatment for metastatic melanoma and predict outcome.

Prostate cancer radiotherapy more precisely targeted with nuclear medicine imaging
A nuclear medicine imaging procedure can pinpoint prostate cancer with superior accuracy, allowing more precisely targeted treatment, according to new research featured in the November 2018 issue of The Journal of Nuclear Medicine.

New nuclear medicine tracer will help study the aging brain
A new PET imaging radiotracer could help researchers understand neurodegenerative disease and the aging brain.

New nuclear medicine imaging method shows strong potential for cancer imaging
A new nuclear medicine imaging method could help diagnose widespread tumors, such as breast, colon, pancreas, lung and head and neck cancer better than current methods, with less inconvenience to patients and with equal or improved accuracy.

New nuclear medicine technique could help tackle brain disease
A new molecular imaging method can monitor the success of gene therapy in all areas of the brain, potentially allowing physicians to more effectively tackle brain conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis.

Read More: Nuclear Medicine News and Nuclear Medicine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.