Ocean acidification affects mussels at early life stages

November 22, 2017

Mussels are popular seafood in northern Germany. Mussels in their blue-black shells, are found in tidal regions of the coastal zones. Like many creatures in the oceans, which protect themselves with a calcareous shell from predators, mussels are endangered by the increasing acidification of seawater caused by the uptake of additional carbon dioxide from the atmosphere which is dissolved in seawater. Mussels are very sensitive to a decline in pH in early life stages. One important reason for this is the enormous calcification rate in the larval stage: between the first and second day of life they form a calcified shell, which corresponds to the weight of the rest of their body. This process is studied by scientists from Kiel and published in the international journal Nature Communications.

"For the first time, we used two different methods to understand the calcification of one to two-day-old shelled larvae to estimate their sensitivity to climate change", explains Kirti Ramesh, first author of the study and PhD student in the Ecophysiology group at GEOMAR and at the Integrated School on Ocean Sciences (ISOS) of the Cluster of Excellence "The Future Ocean". "With the help of fluorescent dyes and specialized microscopy techniques, we were able to track the deposition of calcium carbonate in living larvae and show that calcium carbonate is not formed intracellularly, as previously thought. It is more likely that calcium is acquired directly from the seawater and transported to the shell via specific transport proteins. Then, very close to the shell, the formation of calcium carbonate takes place", explains Kirti Ramesh.

In the second step, the team studied the abiotic conditions directly under the shell. With tiny glass microelectrodes, calcium, pH and carbonate were measured in larvae measuring only tenths of a millimetre. "For the first time, we have been able to show that the mussel larvae are able to increase the pH and the carbonate concentration below the shell, which then leads to higher rates of calcification ", explains Dr. Frank Melzner, Head of the Ecophysiology Working Group at GEOMAR. "However, with increasing acidification, the pH values below the shell also decrease, which leads to reduced calcification rates and, at very high CO2 concentrations, shell dissolution and increased mortality occurs", "Melzner continues. However, it is interesting, that the shells dissolve only at very low pH values. This suggests that organic constituents of the larval mussel shell contribute to dissolution resistance.

"With these results, we can establish a direct relationship between the calcification rate of mussels and the carbonate chemistry of seawater," explains Prof. Dr. Markus Bleich, Head of the Physiological Institute at Kiel University. According to Bleich, the reason for the high sensitivity of mussel larvae to acidification is the limited ion regulation capacity of the mussel larvae.

What's next? "We will use genetic and proteomic methods to investigate which proteins play a role in the transport of calcium and carbonate, and which organic substances in the shell increase their dissolution resistance. Findings from our laboratory show that some mussel populations, especially from the Baltic Sea, are more tolerant to ocean acidification. "We think that the key to increased resistance of mussel shells to dissolution lies in the variation of organic shell constituents", says Melzner. More tolerant populations could finally be the winners of climate change.
-end-
Article: Ramesh, K., M. Y. Hu, J. Thomsen, M. Bleich and F. Melzner, 2017: Mussel larvae modify calcify-ing fluid carbonate chemistry to promote calcification. Nature Communications DOI: 10.1038/s41467-017-01806-8

Remarks: The Study is part of the EU FP7 Marie Curie ITN project CACHE and was supported by the cluster of excellence "The Future Ocean" and the seed-funding programme of GEOMAR. The Physiological Institute of the CAU is member of Kiel Marine Science (KMS; kms.uni-kiel.de). Furthermore, the authors thank the Kiel Marine Organism Culture Centre (KIMOCC) for their support.

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.