Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017

Creutzfeldt-Jakob disease (CJD)--the human equivalent of mad cow disease--is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients develop signature microscopic sponge-like holes in their brains. The initial signs of CJD include memory loss, behavior changes, movement disorder, and vision problems, which usually rapidly progress to death. According to the National Institutes of Health (NIH), 90 percent of CJD patients die within one year of onset, and hundreds of Americans are diagnosed annually. There is no available treatment or cure.

There are numerous types of prion diseases in humans, and CJD is the most common. About 90 percent of CJD cases have a sporadic origin. Prion infectivity is highly concentrated in CJD patient brain tissue. Inter-personal CJD transmission has occurred after patients were exposed to surgical tools previously contaminated by CJD brain tissues.

But in a Science Translational Medicine study published today, Case Western Reserve University School of Medicine researchers found that CJD patients also harbor infectious prions in their skin, albeit at lower levels. In the study, the researchers collected skin samples from 38 patients with assistance from the National Prion Disease Pathology Surveillance Center at Case Western Reserve School of Medicine and measured their prion levels. Using a highly sensitive in vitro assay developed and conducted by Byron Caughey's group at the NIH, they detected prion protein aggregates in the skin samples from all of CJD patients. Prion levels were 1,000-100,000 times lower in the skin than in the brain, and only detectable by this extremely sensitive assay. The researchers further demonstrated that such skin prions are infectious, since they are capable of causing disease in humanized mouse models.

This unexpected finding raises a host of issues. "It is well known that CJD is transmissible via surgical or medical procedures involving prion-infected brain tissue. Our finding of infectious prions in skin is important since it not only raises concerns about the potential for disease transmission via common surgeries not involving the brain, but also suggests that skin biopsies and autopsies may enhance pre-mortem and post-mortem CJD diagnosis," said Wenquan Zou, Associate Professor of Pathology and Neurology and Associate Director of the National Prion Disease Pathology Surveillance Center at Case Western Reserve School of Medicine. Zou led the study involving a consortium of research groups and researchers across Case Western Reserve School of Medicine, University Hospitals Cleveland Medical Center, the NIH, and the People's Republic of China.

"The level of prion infectivity detected in CJD skin was surprisingly significant, but still much lower than that in CJD brains," cautioned Qingzhong Kong, Associate Professor of Pathology and Neurology at Case Western Reserve School of Medicine. "Prion transmission risk from surgical instruments contaminated by skin prions should be much lower than that of instruments contaminated by brain tissue." In the study, the Kong group assisted by the Zou group demonstrated that CJD patient skin is infectious using humanized transgenic mouse models.

Current diagnostic tools for CJD rely on brain tissue samples collected at either biopsy or autopsy, or cerebral spinal fluid obtained by spinal taps. The new study may lay the foundation for less invasive techniques. "Using the skin instead of brain tissue for post-mortem diagnosis could be particularly helpful in cultures that discourage brain autopsy, such as China and India. These countries have the largest populations with the greatest number of patients, but brain autopsy is often not performed," said Zou.

"Further investigation is necessary to determine whether extra precautions should be taken during non-neurosurgeries of CJD patients, especially when surgical instruments will be reused," said Zou. Case Western Reserve School of Medicine researchers plan to further evaluate the potential risk of skin prion transmission through non-neurosurgeries, primarily using mouse models.
-end-
Funding for the study was provided by the Creutzfeldt-Jakob Disease Foundation and the National Institutes of Health (NIH) NS062787 and NS087588 to W.Q.Z.; NS062787 to W.Q.Z., Q.K., and J.G.S.; NS088604 to Q.K.; the Intramural Research Program of the NIAID, NIH to B.C.; as well as the Centers for Disease Control and Prevention Contract UR8/CCU515004 to J.G.S.

For more information about Case Western Reserve University School of Medicine, please visit: http://case.edu/medicine.

Case Western Reserve University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.