Nav: Home

For ants, unity is strength -- and health

November 22, 2018

When a pathogen enters their colony, ants change their behavior to avoid the outbreak of disease. In this way, they protect the queen, brood and young workers from becoming ill. These results, from a study carried out in collaboration between the groups of Sylvia Cremer at the Institute of Science and Technology Austria (IST Austria) and of Laurent Keller at the University of Lausanne, are published today in the journal Science.

High population density, as well as frequent and close contacts between individuals, contribute to a rapid spread of diseases. To protect their colonies, ants have developed disease defense mechanisms, including adaptations to their social organization. Ants do not interact randomly with other colony members, but are organized in sub-groups according to their age and the tasks they carry out. While young worker ants, so-called "nurses", look after the valuable brood at the center of the colony, older worker ants become foragers that collect food outside the nest. These forager ants are more exposed to pathogens.

Strengthening the fort

The researchers used a "barcode" system developed in the Keller group to follow the interactions between ants, especially to observe their behavior when disease spreads. In a first experiment, they placed digital markers on 2'266 garden ants. Infrared cameras took an image of the colonies every half second, and so the researchers could follow and measure the movement and position of each individual, and their social interactions. The researchers showed that the ants' subdivision into groups acts prophylactically and reduces the risk that disease spreads.

10% of the worker ants (all foragers) were then exposed to fungal spores which spread easily through contact. Comparing the ant colonies before and after pathogen exposure showed that the ants quickly detect the presence of the fungal spores and change their behavior to strengthen already existing defenses. "The ants change how they interact and who they interact with", explains Sylvia Cremer, "The cliques among ants become even stronger, and contact between cliques is reduced. Foragers interact more with foragers, and nurses more with nurses. This is a response by the whole colony - also animals who are not themselves treated with spores change their behavior." Laurent Keller adds: "This is the first scientific study that shows that an animal society is able to actively change its organization to reduce the spread of disease."

Using a highly sensitive qPCR method established in the Cremer group, the researchers could quantify exactly how many spores an individual ant carried on its body. qPCR monitors how a targeted DNA molecule is amplified during the so-called polymerase chain reaction. This allows researchers to draw conclusion about how much of the DNA, and by inference how much of the fungal spores, were present in the beginning.

Because the ants changed how they interact, spores transfer patterns also changed. Only few individuals received a high pathogen dose, which could cause disease. In addition, more ants received a low dose, which Cremer and her group previously showed to not cause disease but instead be protective in the face of future infections - similar to variolation in humans. "The pathogen is distributed on many shoulders, and the ants' immune systems can deal very well with this lower pathogen level, which provides a form of immune memory", says Cremer.

Save the queen

The analyses also showed that the colony protects especially valuable animals. The queen, the only individual that reproduces, and the nurses, young worker ants that can still contribute many hours of work to the colony, received less of the pathogen. "In a colony, not all animals have to be protected - but the most valuable individuals should survive", Keller explains.

The researchers also carried out a survival experiment, to see how pathogen load 24 hours after exposure correlates with death from disease. The correlation was high, says Nathalie Stroeymeyt, first author and Postdoc in the group of Laurent Keller: "We calculated a predictive spore load for each individual ant, based on its interaction with other ants in the first 24 hours after pathogen exposure. Ants with a high predicted spore load were more likely to die nine days after exposure than ants with a low predicted spore load." She summarizes: "Mortality was higher among foragers than among nurses. And all the queens were still alive at the end of the experiment."

How ants collectively deal with problems, such as the risk of an epidemic, could give insights into general principles of disease dynamics, says Cremer: "Social interactions are the routes on which diseases travel and define how epidemics may spread. Basic research on ants can help us to deeper understand epidemiological processes, which can be relevant also in other social groups."
About IST Austria

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

Institute of Science and Technology Austria

Related Behavior Articles:

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.
How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.
I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.
Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.
AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.
Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.
Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.
Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.
Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.
Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
More Behavior News and Behavior Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.