How the brain decides to punish or not

November 22, 2019

Oksana Zinchenko, Research Fellow at the Institute of Cognitive Neuroscience, HSE University, has conducted meta-analysis of 17 articles to find out which areas of the brain are involved decision-making for rendering social punishment. It would appear that in case of both victims of violations as well as witnesses, punishment decisions activate the brain regions responsible for focusing one's attention, processing information, and responding effectively to social interaction. The findings of the study were published in Scientific Reports.

Social punishment is necessary in order to maintain order and cooperation in society. In their everyday lives, people who have committed wrongdoings may face reprimand or rejection. A decision to invoke punishment may be implemented by a person who was affected because of such a violation of norms ('second-party punishment'), or by a neutral person, who nevertheless knows about the norm violation ('third-party punishment'). It used to be a known fact that certain brain areas activate in victims of violations as well as in witnesses in response to different forms of social punishment. However, it was not entirely clear to date which areas were activated in particular.

A typical game for the study of social punishment is the Ultimatum where one test subject makes a decision about how much of the amount given to him or her will be given to another subject. The participant is free to divide it up as he or she likes, even keeping the entire amount. If the second participant finds the decision unfair, they can punish the offender (for example, reject the proposed division), i.e. execute 'second party punishment'. Alternatively, the punishment can be invoked by the third test subject, the witness of the transaction, which will constitute third-party punishment.

Oksana Zinchenko employed activation likelihood estimation (ALE) to analyze data on the brain activity of 383 participants of 17 studies devoted to the subject of social punishment. The participants were either playing the Ultimatum game or were engaged in other types of strategic games simulating norm-violating events that would result in a social punishment. While the participants were performing these tasks, the researchers applied functional Magnetic Resonance Imaging (fMRI) to record their brain activity.

The analysis revealed that such areas of the brain as the bilateral claustrum (upon activation, spreading to the insular cortex), the left superior frontal and right interior frontal gyri were always activated for social punishment tasks. These areas related to either the salience network or central-executive network of the brain. These neuron systems are responsible for focusing attention, detecting errors, and processing contextual information - all essential components for punishment decision-making. The right interior frontal gyrus is regarded as a key region in the brain's 'emotional empathy network', required for adequate responses to various social interactions. As for the left superior frontal gyrus, its main function is believed to store information in the working memory during decision-making processes.

However, the meta-analysis revealed no concordant activation in other brain regions, including those corresponding with the mentalizing network, which operate in a different way with respect to second-party and third-party punishments. This network is responsible for evaluating a wrongdoer's intentions. Some regions of this network may be triggered differently, depending on the type of punishment under consideration.

The researchers have yet to perform a more in-depth analysis of the differences in the brain's responses to various types of social punishment. Meanwhile, we can better understand what mechanisms underlie social control and people's ability to cooperate by studying the similarities in information processing related to social punishment.

National Research University Higher School of Economics

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to