AI plots sustainable materials

November 22, 2020

Machine learning could teach us how to make the manufacturing of materials cleaner and more sustainable by taking a holistic view to identify the greenest production method, suggest KAUST researchers.

The quest for sustainability means that scientists worldwide are developing advanced materials to help address issues, including carbon capture, water desalination and energy storage, says Rifan Hardian, a postdoc in Gyorgy Szekely's lab. "Although these materials show promising performance, the materials themselves are often produced in unsustainable ways--using harsh conditions, toxic solvents and energy-intensive processes that generate excessive waste--potentially creating more environmental problems than they solve," Hardian says.

In collaboration with Xiangliang Zhang and his team, Szekely and Hardian have been investigating a more sustainable approach to materials development, called design of experiments (DoE). "Unlike conventional approaches to materials optimization, which vary one factor at a time, DoE is a systematic approach that allows multiple factors to be varied simultaneously," Hardian says.

DoE theoretically allows variables--such as reactant and solvent choice, reaction time and reaction temperature--to be optimized all at once. The procedure cuts the number of experiments conducted and also potentially identifies the greenest possible way to make a material. However, it is challenging to optimize each variable to identify the best reaction protocol from such sparse experimental data. "This is where machine learning comes in," Hardian says.

Machine learning is a form of artificial intelligence that can learn patterns from a limited number of data points to fill in the blanks in the data. "This way, one can view the entire experimental space and pick the one reaction condition that best fits the desired results," Hardian says.

The team combined DoE and machine learning to identify a sustainable method for making a popular metal organic framework (MOF) material called ZIF-8. "ZIF-8 has great potential in applications, such as gas separation, catalysis, heavy metal removal and environmental remediation," Hardian says. The team optimized 10 variables in the electrochemical synthesis of ZIF-8, identifying a high-yielding process that used water as a solvent and generated minimal waste. "Thanks to machine learning, we developed a holistic view of the variables' interactions and identified many unexpected correlations that could have been missed if we had followed a conventional approach," Hardian says.

The next milestone will be to apply DoE and machine learning to large-scale materials production, Szekely says. "Ultimately, our aim is to turn the futuristic vision of an autonomous laboratory system, which can continuously run and self-optimize reaction conditions, into a reality," he says.

King Abdullah University of Science & Technology (KAUST)

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to