The physics of golf balls

November 23, 2008

November 23, 2008 -- At the 61st Meeting of the American Physical Society's Division of Fluid Dynamics this week, a team of researchers from Arizona State University and the University of Maryland is reporting research that may soon give avid golfers another way to improve their game.

Employing the same sort of scientific approach commonly used to improve the design of automobiles, aircraft, ships, trains, and other moving objects, the team has used a supercomputer to model how air flows around a ball in flight and to study how this flow is influenced by the ball's dimples. Their goal is to make a better golf ball by optimizing the size and pattern of these dimples and lowering the drag golf balls encounter as they fly through the air.

"For a golf ball, drag reduction means that the ball flies farther," says ASU's Clinton Smith, a Ph.D. student who is presenting a talk on the research on Sunday, November 23, 2008 in San Antonio. Smith and his advisor Kyle Squires conducted in collaboration with Nikolaos Beratlis and Elias Balaras at the University of Maryland and Masaya Tsunoda of Sumitomo Rubber Industries, Ltd.

It's no secret that dimples improve the flight of a golf ball. Once in flight, a golf ball experiences aerodynamic forces generated from the surrounding air flow as well as gravity. The latter constantly pulls it towards the ground, while the aerodynamic force in the direction of motion, or drag force, dictates the distance it travels. The main purpose of dimples is to reduce the drag and help the ball fly farther. Actually, dimpled golf balls experience about half the drag as those with no dimples.

Although the United States Golf Association (USGA) regulates the design of golfballs, laying out uniform size and weight specifications that all approved golf balls must meet, the dimple pattern is not regulated. It is one of the very few parts of the ball over which companies have freedom to change the design. But what pattern is best for lowering the drag?

Up to now, dimple design has been more of an art than a science. For many years, sporting goods companies would design their dimple patterns by simple trial and error, testing prototype after prototype against one another. The new study takes a different approach, asking how to design dimple size and pattern based on mathematical equations that model the physics of a golf ball in flight. Working out the solution to these equations -- even on the fastest personal computers today -- is not feasible since it would take more than 15 years of computing time just to get a glimpse of the flow around the golf ball for a fraction of a second.

Nikolaos Beratlis, a Ph.D. student at the University of Maryland, and his advisor Elias Balaras have been developing highly efficient algorithms and software to solve these equations on parallel supercomputers, which can reduce the simulation time to the order of hours. The number crunching for a typical computation, for example, takes approximately 300 hours using 500 fast processors running in parallel (normal desktop computers may have one or two slower processors).

The group's work presented by Smith in San Antonio will summarize their research. So far, they have characterized air flow around a golf ball at the finest level of detail ever attempted, teasing out the drag at each exact location and showing how air flows in an out of each tiny dimple on a golf ball's surface as it spins through the air during flight.

In the end, they produced a model that reveals the physics of a flying golf ball with the greatest level of detail ever seen -- the first step in achieving the project's long-term goal of optimizing dimple design to realize the lowest drag possible. The next step, says Smith, is to extend the work by comparing different dimple designs.

New designs are still years away at best, however, so don't give up the driving range just yet.
-end-
The talk, "Direct Numerical Simulations of the Flow around a Golf Ball: Effect of Rotation" by will take place at 4:49 p.m. on Sunday, November 23, 2008 in Room 201 of the Gonzales Convention Center in San Antonio, TX. Abstract: http://meetings.aps.org/Meeting/DFD08/Event/90118



ABOUT THE MEETING

The 61st Annual Meeting of the American Physical Society's Division of Fluid Dynamics, which takes place from November 23-25 at the San Antonio Convention Center in Texas, is the largest scientific meeting of the year devoted to the dynamics of such fluids. It brings together researchers from across the globe to present work with applications in astronomy, engineering, alternative energy, and medicine. For more information, please visit the APS Division of Fluid Dynamics Virtual Press Room. See: http://www.aps.org/units/dfd/pressroom/.

ABOUT THE DIVISION OF FLUID DYNAMICS

The Division of Fluid Dynamics of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. See: http://www.aps.org/units/dfd/.

ABOUT AIP

The American Institute of Physics (AIP) is a not-for-profit organization chartered in 1931 for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve physics, astronomy, and related fields of science and technology by serving its ten Member Societies and their associates, individual scientists, educators, R&D leaders, and the general public with programs, services and publications. See: http://www.aip.org/.

American Institute of Physics

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.