Control of blood clotting by platelets described; provides medical promise

November 23, 2009

Blacksburg, Va. - Cell fragments called platelets are essential to promote blood clotting. Virginia Tech faculty members and students have discovered novel molecular interactions at the surface of platelets that control blood clotting.

The Virginia Tech researchers describe how platelets perform this life-saving magic in the November 24 (8 p.m. Eastern U.S. Time) online issue of the journal PLoS ONE (Public Library of Science) in the article "Sulfatides Partition Disabled-2 in Response to Platelet Activation," by Karen E. Drahos, biological sciences Master's degree student from Roanoke, Va.; John D. Welsh, a biological sciences undergraduate student from Pennington, N.J.; and biological sciences Assistant Professors Carla V. Finkielstein and Daniel G. S. Capelluto.

Capelluto and Finkielstein study how proteins signal from biological membranes. One such membrane protein is the integrin receptor that resides on the surface of platelets. A protein that strongly promotes platelet activation through the integrin receptor is thrombin. When there is tissue injury, thrombin converts fibrinogen into fibrin to form a network that traps red blood cells and platelets, creating a clot.

However, the platelets may not remain trapped. They can break their bonds with the network and thin or remove a clot - a good thing if the clot is blocking an artery, as in thrombosis or stroke.

One part of the process is well known. When a platelet is stimulated, such as by thrombin, the protein Disabled-2 (Dab2) moves from where it is stored inside of the platelet to the surface, where it interacts with the integrin receptor. If this is the case, Dab2 inhibits blood clotting.

Experimentation and measurements by the Virginia Tech researchers revealed that Dab2 also binds to sulfatides, a lipid that also resides on the surface of platelets. Sulfatides sequester Dab2 proteins, preventing them from binding to the integrin receptor.

"That is, sulfatides partition Dab2 into two pools - one pool that is part of the clotting process and one pool that prevents coagulation," said Capelluto.

When no longer on high alert to regulate clotting, the Dab2 proteins return to the interior of the platelet. "They are likely recycled for the next time they are needed," said Capelluto.

The study was Drahos' Master's thesis research, conducted in both Capelluto's and Finkielstein's labs. The thesis received the 2009 William Preston Society Thesis Award in Life Sciences for the best original research with potential to benefit all people. Co-author John Welsh is now a graduate student in Finkielstein's lab.

The PLoS ONE article stops with the definition of the chemistry of platelets' two responses to thrombin. But research by Finkielstein and Capelluto is looking at the platelet aggregation inhibitor process as a target for intervention to control bleeding and clotting. "This promises a high impact at the clinical level," said Capelluto. "The goal is a tool that could be used in surgery and could help people with bleeding or blood clotting disorders without drugs and side effects."
-end-
Two patents are pending. For more information, visit <http://www.biol.vt.edu/faculty/finkielstein/new%20website%202009/partnerships.html> or contact Jackie Reed at Virginia Tech Intellectual Properties Inc. at 540-443-9217 or jreed@vtip.org.

The article will be available online after 8 p.m. Eastern U.S. time on November 24, 2009, at http://www.plosone.org/article/browse.action?field=date.

Virginia Tech

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.