Virginia Tech engineers introduce thermotherapy as a chemotherapy alternative

November 23, 2010

Using hyperthermia, Virginia Tech engineering researchers and a colleague from India unveiled a new method to target and destroy cancerous cells. The research was presented at the 63rd annual meeting of the American Physical Society Nov. 23 in Long Beach, Calif.

The cancer treatment uses hyperthermia to elevate the temperature of tumor cells, while keeping the surrounding healthy tissue at a lower degree of body heat. The investigators used both in vitro and in vivo experiments to confirm their findings.

The collaborators are Monrudee Liangruksa, a Virginia Tech graduate student in engineering science and mechanics, and her thesis adviser, Ishwar Puri, professor and head of the department, along with Ranjan Ganguly of the department of power engineering at Iadavpur Univesity, Kolkata, India.

Liangruska of Bangkok, Thailand, presented the paper at the meeting.

In an interview prior to the presentation, Puri explained that to further perfect the technique they used ferrofluids to induce the hyperthermia. A ferrofluid is a liquid that becomes strongly magnetized in the presence of a magnetic field. The magnetic nanoparticles are suspended in the non-polar state.

"These fluids can then be magnetically targeted to cancerous tissues after intravenous application," Puri said. "The magnetic nanoparticles, each billionths of a meter in size, seep into the tissue of the tumor cell due to the high permeability of these vessels."

Afterwards, the magnetic nanoparticles are heated by exposing the tumor to a high frequency alternating magnetic field, causing the tissue's death by heating. This process is called magnetic fluid hyperthermia and they have nicknamed it thermotherapy.

Temperatures in the range of 41 to 45 degrees Celsius are enough to slow or halt the growth of cancerous tissue. However, without the process of magnetic fluid hyperthermia, these temperatures also destroy healthy cells.

"The ideal hyperthermia treatment sufficiently increases the temperature of the tumor cells for about 30 minutes while maintaining the healthy tissue temperature below 41 degrees Celsius," Puri said. "Our ferrofluid-based thermotherapy can be also accomplished through thermoablation, which typically heats tissues up to 56 degrees C to cause their death, coagulation, or carbonization by exposure to a noninvasive radio frequency, alternating current magnetic field. Local heat transfer from the nanoparticles increases the tissue temperature and ruptures the cell membranes."

Puri added that testing showed iron oxide nanoparticles are "the most biocompatible agents for magnetic fluid hyperthermia." Platinum and nickel also act as magnetic nanoparticles but they "are toxic and vulnerable" when exposed to oxygen.

The researchers plan to test their analytical approach by conducting experiments on various cancer cells in collaboration with Dr. Elankumaran Subbiah of the Virginia-Maryland School of Veterinary Medicine. A senior design team consisting of five engineering science and mechanics undergraduate Virginia Tech students is fabricating an apparatus for these tests.
-end-


Virginia Tech

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.