How old yeast cells send off their daughter cells without the baggage of old age

November 23, 2011

Kansas City, MO -- The accumulation of damaged protein is a hallmark of aging that not even the humble baker's yeast can escape. Yet, aged yeast cells spawn off youthful daughter cells without any of the telltale protein clumps. Now, researchers at the Stowers Institute for Medical Research may have found an explanation for the observed asymmetrical distribution of damaged proteins between mothers and their youthful daughters.

Reporting in the Nov. 23, 2011, issue of Cell the research team, led by Stowers investigator Rong Li, Ph.D., proposes that the limited mobility of clumps of damaged proteins and yeast cells' geometry -- the narrowness of the connection (bud neck) between the mother and the daughter before their separation, in particular -- are sufficient to ensure that protein aggregates accumulated during the normal aging process are retained in the mother cell during cell division.

"Harmful protein aggregates had recently been thought to be sent back into the mother cell via a directed transport system," says Li. "Our model suggests that no active shuttle mechanism may be necessary to help with the asymmetric segregation of protein aggregates during yeast cell divisions."

In the budding yeast Saccharomyces cerevisae -- an important model organisms used in aging research -- lifespan can be defined by the number of daughter cells a mother has produced, as opposed to by calendar time, a process known as replicative aging. Daughter cells reset their clock and start counting the number of cell division they have undergone from scratch.

The transition from youth to old age is accompanied by metabolic changes and the accumulation of damage as a result of wear and tear. A central question in aging research is the nature of the damage that contributes to aging and how old mother cells avoid passing on these aging determinants to their daughters.

One factor that is known to correlate with replicative age is the buildup of aggregates formed by damaged proteins. "These proteins are preferentially retained by the mother during bud formation and cell division," explains Li. "A better understanding of replicative aging of a cell population based on asymmetric cell divisions may provide insights into how higher organisms maintain a population of "youthful" stem cells with high proliferative potential during aging."

To learn more about the movement and fate of damaged proteins in dividing yeast cells, graduate student and first author Chuankai Zhou with help from Amr Eldakak, Ph.D, a postdoctoral research associate in the Li laboratory, added a green fluorescent tag to Hsp104p, a protein known to modify and dissolve protein aggregates by unfolding and refolding proteins. Zhou then used live-cell imaging to record the movements of thousands of protein aggregates induced by heat in three dimensions.

"Most movements were confined within the bud or the mother but we did see a few movements from bud to mother and vice versa," says Zhou. "Overall though, we couldn't detect any directionality in the movements of the aggregates." In order to rigorously characterize the movement of the protein aggregates, Zhou collaborated with Stowers Research advisors Brian Slaughter, Ph.D., and Jay Unruh, Ph.D., and used particle tracking and computational analysis to show that the aggregate movement is best described as 'random walk'.

Time-lapse movies also revealed that, over time, heat shock-induced aggregates cleared from all buds and their numbers plummeted in mother cells. When Zhou introduced a mutation into Hsp104p that does not affect Hsp104p's ability to bind to protein aggregates but disrupts its refolding activity, aggregates no longer cleared from neither mother nor daughter cell. "It told us that heat-induced aggregates dissolved with the help of Hsp104p," explains Zhou.

Zhou then turned his attention to naturally occurring protein aggregates, which are the result of oxidative damage in cells of older replicative age. He found that these protein clumps followed the same random walk pattern but didn't dissolve over time. However, these aggregates appeared to move within the confines of the mother without escaping into the bud.

With the help of Stowers research advisor Boris Rubinstein, the team used 3D numerical simulations as well as a 1D analytical model to show that the limited, random mobility of the aggregates was sufficient to explain their preferential retention in the mother, and that the narrow opening of the bud neck further helps trapping the aggregates within the mother prior to cell division.
-end-
The research was supported primarily by a grant from the National Institute of Health.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over 800 million dollars in pursuit of its mission.

Currently the Institute is home to over 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities. Learn more about the Institute at http://www.stowers.org.

Stowers Institute for Medical Research

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.