UMMS scientists present draft sequence of monarch butterfly genome

November 23, 2011

WORCESTER, Mass. - Each fall millions of monarch butterflies from across the eastern United States use a time-compensated sun compass to direct their navigation south, traveling up to 2,000 miles to an overwintering site in a specific grove of fir trees in central Mexico. Scientists have long been fascinated by the biological mechanisms that allow successive generations of these delicate creatures to transverse such long distances to a small region roughly 300 square miles in size. To unlock the genetic and regulatory elements important for this remarkable journey, neurobiologists at the University of Massachusetts Medical School (UMMS) are the first to sequence and analyze the monarch butterfly genome.

"Migratory monarchs are at least two generations removed from those that made the journey the previous fall," said Steven M. Reppert, MD, professor and chair of neurobiology and senior author of the study. "They have never been to the overwintering sites before, and have no relatives to follow on their way. There must be a genetic program underlying the butterflies' migratory behavior. We want to know what that program is, and how it works."

In a paper published in the journal Cell, Reppert and UMMS colleagues Shuai Zhan, PhD, and Christine Merlin, PhD, along with collaborator Jeffrey L. Boore, PhD, CEO of Genome Project Solutions, describe how next-generation sequencing technology was used to generate a draft 273 Mb genome of the migratory monarch. Analysis of the combined genetic assembly revealed an estimated set of 16,866 protein-coding genes, comprising several gene families likely involved in major aspects of the monarch's seasonal migration. The novel insights observed by Reppert and colleagues in the newly sequenced monarch genome include:"Why sequence another species?" said Laurie Tompkins, Ph.D., who oversees grants focused on the genetics of behavior at the National Institutes of Health's National Institute of General Medical Sciences, which supported the work. "In this case, it's because monarch butterflies are exceptional in that they migrate thousands of miles, seasonally. Genomic sequence provides the raw material for understanding the remarkable behavioral and physiological adaptations that enable the butterflies' long-distance migration."

Understanding the relationship between genes, behavior and physiological adaptations in monarchs may also lead to new insights into similar connections in humans. Circadian clocks, for instance, are a crucial component in the complex time-compensated sun compass system governing a monarch's ability to navigate long distances and are now understood to play a pivotal role in human biology. Temporal variations in hormone levels, pharmacokinetics, and disease processes, such as the increased incidence of heart attacks in the early morning, reveal the prominent influence of the circadian clock on human physiology. Understanding the molecular mechanisms of the circadian clock has already helped reveal how clock gene mutations contribute to disorders of the timing of sleep, and new insights into these genetic processes could illuminate how clock gene mutations contribute to diseases like major depression and seasonal affective disorder.

"In terms of fundamental brain processes, those involved in the navigation mechanisms used for long-distance migration have been difficult to decipher," said Reppert. "Dissecting the genetic basis of long-distance migration in the monarch may help us understand these mechanisms not only in monarchs but more generally in other migrants, including migratory birds and sea turtles."
-end-
This project was supported by American Recovery and Reinvestment Act (ARRA) funds from the National Institute of General Medical Sciences, National Institutes of Health. This research project was initiated with aid from the Higgins Family.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $307 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit http://www.umassmed.edu.

University of Massachusetts Medical School

Related Circadian Clock Articles from Brightsurf:

Pinpointing the cells that keep the body's master circadian clock ticking
UT Southwestern scientists have developed a genetically engineered mouse and imaging system that lets them visualize fluctuations in the circadian clocks of cell types in mice.

The discovery of new compounds for acting on the circadian clock
The research team comprised of Designated Associate Professor Tsuyoshi Hirota and Postdoctoral Fellows Simon Miller and Yoshiki Aikawa, of the Nagoya University Institute of Transformative Bio-Molecules, has succeeded in the discovery of novel compounds to lengthen the period of the circadian clock, and has shed light on their mechanisms of action.

Let there be 'circadian' light
Researchers publishing in Current Biology describe the science behind creating lighting to make us all happy and productive indoors.

U of M research discovers link between stress and circadian clock health
New research from the University of Minnesota Medical School found a little stress can make the circadian clock run better and faster.

The role of GABA neurons in the central circadian clock has been discovered
Temporal order of physiology and behavior is regulated by the central circadian clock located in the SCN.

Researchers take aim at circadian clock in deadly brain cancer
Scientists at USC and UC San Diego have discovered a potential novel target for treating glioblastoma, the deadly brain cancer that took the life of Sen.

Circadian clock and fat metabolism linked through newly discovered mechanism
Princeton University researchers found that the enzyme Nocturnin, known for its role in fat metabolism and circadian rhythm, acts on two well-established molecules in metabolism.

Dead zones in circadian clocks
Circadian clocks of organisms respond to light signals during night but do not respond in daytime.

Circadian clock plays unexpected role in neurodegenerative diseases
Northwestern University researchers induced jet lag in a fruit fly model of Huntington disease and found that jet lag protected the flies' neurons.

Researchers locate circadian clock that controls daily rhythms of aggression
Synchronized by light and darkness, the circadian clock exerts control over wake/sleep cycles, body temperature, digestion, hormonal cycles and some behavior patterns.

Read More: Circadian Clock News and Circadian Clock Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.