Nav: Home

Compounds produced by phytopathogenic microbes encourage plant growth

November 23, 2016

A broad range of microorganisms, including phytopathogenic fungi and bacteria, are capable of producing volatile compounds that encourage plant growth, flowering and the accumulation of reserve substances. This has been shown in a study led by the Carbohydrate Metabolism research group of the Institute of Agrobiotechnology, a joint center of the Spanish National Research Council, the Public University of Navarre and the Government of Navarre.

The discovery could be applied to improving crop yields sustainably and as an alternative to conventional agrochemical treatments, and to encourage interaction between plants and a small number of beneficial microorganism strains. The results have been published in two papers in the journals Plant Cell and Environment, and Plant Physiology.

New concept

"This study proposes for the first time the concept of 'Bad little critters, beneficial workers', according to which non-beneficial microorganisms constitute a promising unexplored, source of biostimulatory substances with a high biotechnological potential," explained Javier Pozueta, a CSIC researcher at the Institute of Agrobiotechnology.

The papers also include the results of the studies conducted on the biochemical and molecular mechanisms involved in the "positive" response of plants to volatile compounds produced by microorganisms that, from an anthropocentric perspective, are regarded as "negative" or "not beneficial".

Such studies show that microbial compounds exert a positive effect on the plant's capacity to convert CO2 (carbon dioxide) from the air into biomass. The work is consistent with the idea that the organisms are linked to or communicate with each other through "infochemicals" or substances that "convey messages".

The finding constitutes a useful line of study in the face of the increasing demand for food resulting from world population growth and the progressive reduction in arable land.

The work was carried out in collaboration with researchers from the Centre of the Region Haná for Biotechnological and Agricultural Research of the University of Palacký (Czech Republic) within the collaboration framework of the international I-LINK 0939 project of the i-LINK+ programme, funded by the CSIC, to promote international scientific collaboration.
-end-


Elhuyar Fundazioa

Related Microorganisms Articles:

Biochar provides high-definition electron pathways in soil
Cornell University scientists have discovered a new high-definition system that allows electrons to travel through soil farther and more efficiently than previously thought.
Microorganisms in the subsurface seabed on evolutionary standby
Through genetic mutations microorganisms normally have the ability to develop new properties over a short time scale.
Study tightens connection between intestinal microorganisms, diet, and colorectal cancer
A new study led by researchers at Dana-Farber Cancer Institute provides some of the strongest evidence to date that microorganisms living in the large intestine can serve as a link between diet and certain types of colorectal cancer.
Gut microorganisms affect our physiology
Researchers have found evidence that could shed new light on the complex community of trillions of microorganisms living in all our guts, and how they interact with our bodies.
The evolutionary secret of H. pylori to survive in the stomach
Professor Frédéric Veyrier's most recent research, in collaboration with the team of Professor Hilde De Reuse at the Institut Pasteur, has shed light on key genes essential to the pathogenesis of Helicobacter pylori bacterium, which causes gastric infections.
Compounds produced by phytopathogenic microbes encourage plant growth
A broad range of microorganisms, including phytopathogenic fungi and bacteria, are capable of producing volatile compounds that encourage plant growth, flowering and the accumulation of reserve substances.
Compounds emitted by phytopathogen microbes encourage plant growth
A wide range of microorganisms, including fungi and phytopathogenic bacteria, are capable of emitting volatile compounds which boost plant growth and flowering, and in accumulating up reserves as demonstrated in a study led by scientific researchers at Navarra's Institute of Agro biotechnology, in northern Spain, which is a mixed centre shared between Spain's National Research Council (CSIC), the Public University of Navarra, and the Regional Government of Navarra.
Which genes are crucial for the energy metabolism of Archaea?
A research team led by Christa Schleper from the University of Vienna succeeded in isolating the first ammonia-oxidizing archaeon from soil: Nitrososphaera viennensis -- the 'spherical ammonia oxidizer from Vienna.' In the current issue of the renowned journal PNAS, the scientists present new results: they were able to detect all proteins that are active during ammonia oxidation -- another important piece of the puzzle for the elucidation of the energy metabolism of Archaea.
WDCM released first Microbial Resource Development Report for China
The World Data Center for Microorganisms (WDCM) and Center for Microbial Resources and Big Data of the Institute of Microbiology of CAS (IMCAS) jointly released the '2016 Microbial Resource Development Report for China' on Sept.
Mass biofuel production without mass antibiotic use
Rather than applying mass amounts of antibiotics to vats of biofuel-producing microorganisms to keep control these cultures, researchers have developed a new technique using modified strains that outcompete other possible contaminating microbes.

Related Microorganisms Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...