Nav: Home

World of viruses uncovered

November 23, 2016

A groundbreaking study of the virosphere of the most populous animals - those without backbones such as insects, spiders and worms and that live around our houses - has uncovered 1445 viruses, revealing people have only scratched the surface of the world of viruses - but it is likely that only a few cause disease.

The meta-genomics research, a collaboration between the University of Sydney and the Chinese Centre for Disease Control and Prevention in Beijing, was made possible by new technology that also provides a powerful new way to determine what pathogens cause human diseases.

Professor Edward Holmes, from the Marie Bashir Institute for Infectious Diseases & Biosecurity and the School of Life and Environmental Sciences, who led the Sydney component of the project said although the research revealed humans are surrounded by viruses in our daily lives, these did not transfer easily to humans.

"This groundbreaking study re-writes the virology text book by showing that invertebrates carry an extraordinary number of viruses - far more than we ever thought," Professor Holmes said.

"We have discovered that most groups of viruses that infect vertebrates - including humans, such as those that cause well-known diseases like influenza - are in fact derived from those present in invertebrates," said Professor Holmes, who is also based at the University's multidisciplinary Charles Perkins Centre.

The study suggests these viruses have been associated with invertebrates for potentially billions of years, rather than millions of years as had been believed - and that invertebrates are the true hosts for many types of virus.

The paper, "Redefining the invertebrate RNA virosphere," is published tonight in Nature.

"Viruses are the most common source of DNA and RNA on earth. It is all literally right under our feet," Professor Holmes said.

The findings suggest viruses from ribonucleic acid, known as RNA - whose principal role is generally to carry instructions from DNA - are likely to exist in every species of cellular life.

"It's remarkable that invertebrates like insects carry so very many viruses - no one had thought to look before because most of them had not been associated with human-borne illnesses."

Although insects such mosquitoes are well-known for their potential to transmit viruses like zika and dengue, Professor Holmes stressed that insects should not generally be feared because most viruses were not transferable to humans and invertebrates played an important role in the ecosystem.

Importantly, the same techniques used to discover these invertebrate viruses could also be used to determine the cause of novel human diseases, such as the controversial 'Lyme-like disease' that is claimed to occur following tick bites.

"Our study utilised new techniques in meta-genomics, which we are also using to provide insights into the causes of human-borne diseases," said Professor Holmes, who is also a National Health and Medical Research Council Australia Fellow.

"The new, expensive technologies available to researchers which have allowed us to do this landmark project, provide the ultimate diagnostic tool."

Professor Holmes and his collaborators are conducting human studies using these new techniques to analyse Lyme-like disease and other clinical syndromes.
-end-
NOTES TO EDITORS:

This paper describes a landmark 'meta-transcriptomics' analysis of ~220 species of invertebrates from nine diverse animal phyla that have not previously been studied with respect to viral diversity and evolution. What we discovered is a picture of phylogenetic and genomic diversity that fundamentally changes our understanding of RNA virus evolution and re-writes the virology text book.

The meta-sequencing study profiled more than 220 invertebrate species across nine animal phyla and discovered more viruses than have been documented in any one study. The research fills major gaps in the understanding of RNA and reveals viruses evolve in a far more complex way than was previously thought. For example, the study has found that viruses can capture genes (including from the animals they infect), lose genes and transfer genes among themselves.

Together, the data from this new research present a view of the RNA virosphere that is more phylogenetically and genomically diverse than that depicted in current classification schemes and provide a more solid foundation for studies in virus ecology and evolution.

It enables us to re-examine and re-define the invertebrate virosphere, providing a new perspective on the fundamental patterns and processes of viral evolution.

University of Sydney

Related Rna Articles:

How RNA formed at the origins of life
A single process for how a group of molecules called nucleotides were made on the early Earth, before life began, has been suggested by a UCL-led team of researchers.
RNA and longevity: Discovering the mechanisms behind aging
Korean researchers suggests that NMD-mediated RNA quality control is critical for longevity in the roundworm called C. elegans, a popularly used animal for aging research.
Don't kill the messenger RNA
Success of new protein-making therapy for hemophilia opens door for treating many other diseases.
RNA modification important for brain function
Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg University Mainz (JGU) have shown that a new way of regulating genes is vital for the activity of the nervous system.
Atlas of the RNA universe takes shape
In the last few years, small snippets of RNA, which may have played a key role in the planet's earliest flickering of life, have been uncovered and examined in great detail.
Punching cancer with RNA knuckles
Researchers achieved an unexpected eye-popping reduction of ovarian cancer during successful tests of targeted nanohydrogel delivery in vivo in mice.
Gatekeeping proteins to aberrant RNA: You shall not pass
Berkeley Lab researchers found that aberrant strands of genetic code have telltale signs that enable gateway proteins to recognize and block them from exiting the nucleus.
Short RNA molecules mapped in single cell
Researchers at Karolinska Institutet have measured the absolute numbers of short, non-coding, RNA sequences in individual embryonic stem cells.
Watching RNA fold
New technology takes a nucleotide-resolution snapshot of RNA as it is folding, which could lead to discoveries in biology, gene expression, and disease.
Bacteria: Third RNA binding protein identified
Pathogenic bacteria use small RNA molecules to adapt to their environment.

Related Rna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...