Scientists make sound-waves from a quantum vacuum at the Black Hole laboratory

November 23, 2020

Researchers have developed a new theory for observing a quantum vacuum that could lead to new insights into the behaviour of black holes.

The Unruh effect combines quantum physics and the theory of relativity. So far it has not been possible to measure or observe it, but now new research from a team led by the University of Nottingham has shed light on how this could be achieved using sound particles. The team's research has been published today in the journal Physical Review Letters.

The Unruh effect suggests that if you fly through a quantum vacuum with extreme acceleration, the vacuum no longer looks like a vacuum: rather, it looks like a warm bath full of particles. This phenomenon is closely related to the Hawking radiation from black holes.

A research team from the University of Nottingham's Black Hole Laboratory in collaboration with University of British Columbia and Vienna University of Technology has shown that instead of studying the empty space in which particles suddenly become visible when accelerating, you can create a two-dimensional cloud of ultra-cold atoms (Bose-Einstein condensate) in which sound particles, phonons, become audible to an accelerated observer in the silent phonon vacuum. The sound is not created by the detector, rather it is hearing what is there just because of the acceleration (a non-accelerated detector would still hear nothing).

The vacuum is full of particles

One of the basic ideas of Albert Einstein's theory of relativity is: Measurement results can depend on the state of motion of the observer. How fast does a clock tick? How long is an object? What is the wavelength of a ray of light? There is no universal answer to this, the result is relative - it depends on how fast the observer is moving. But what about the question of whether a certain area of space is empty or not? Shouldn't two observers at least agree on that?

No - because what looks like a perfect vacuum to one observer can be a turbulent swarm of particles and radiation to the other. The Unruh effect, discovered in 1976 by William Unruh, says that for a strongly accelerated observer the vacuum has a temperature. This is due to so-called virtual particles, which are also responsible for other important effects, such as Hawking radiation, which causes black holes to evaporate.

"To observe the Unruh effect directly, as William Unruh described it, is completely impossible for us today," explains Dr. Sebastian Erne who came from the University of Nottingham to the Atomic Institute of the Vienna University of Technology as an ESQ Fellow a few months ago. "You would need a measuring device accelerated to almost the speed of light within a microsecond to see even a tiny Unruh-effect -we can't do that." However, there is another way to learn about this strange effect: using so-called quantum simulators.

Quantum simulators

"Many laws of quantum physics are universal. They can be shown to occur in very different systems. One can use the same formulas to explain completely different quantum systems," says Jörg Schmiedmayer from the Vienna University of Technology. "This means that you can often learn something important about a particular quantum system by studying a different quantum system."

"Simulating one system with another has been especially useful for understanding black holes, since real black holes are effectively inaccessible," Dr. Cisco Gooding from the Black Hole laboratory emphasizes. "In contrast, analogue black holes can be readily produced right here in the lab."

This is also true for the Unruh effect: If the original version cannot be demonstrated for practical rea-sons, then another quantum system can be created and examined in order to see the effect there.

Atomic clouds and laser beams

Just as a particle is a "disturbance" in empty space, there are disturbances in the cold Bose-Einstein condensate - small irregularities (sound waves) that spread out in waves. As has now been shown, such irregularities should be detectable with special laser beams. Using special tricks, the Bose-Einstein condensate is minimally disturbed by the measurement, despite the interaction with the laser light.

Jörg Schmiedmayer explains: "If you move the laser beam, so that the point of illumination moves over the Bose-Einstein condensate, that corresponds to the observer moving through the empty space. If you guide the laser beam in accelerated motion over the atomic cloud, then you should be able to detect disturbances that are not seen in the stationary case - just like an accelerated observer in a vacuum would perceive a heat bath that is not there for the stationary observer."

"Until now, the Unruh effect was an abstract idea," says Professor Silke Weinfurtner who leads the Black Hole laboratory at the University of Nottingham, "Many had given up hope of experimental verification. The possibility of incorporating a particle detector in a quantum simulation will give us new insights into theoretical models that are otherwise not experimentally accessible. "?

Preliminary planning is already underway to carry out a version of the experiment using superfluid helium at the University of Nottingham. "It is possible, but very time-consuming and there are technical hurdles for us to overcome," explains Jörg Schmiedmayer. "But it would be a wonderful way to learn about an important effect that was previously thought to be practically unobservable."

University of Nottingham

Related Black Holes Articles from Brightsurf:

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Black holes? They are like a hologram
Spherical, smooth and simple according to the theory of relativity, or extremely complex and full of information as, according to quantum laws, Stephen Hawking used to say?

Under pressure, black holes feast
A new, Yale-led study shows that some supermassive black holes actually thrive under pressure.

Staining cycles with black holes
In the treatment of tumors, microenvironment plays an important role.

Black holes sometimes behave like conventional quantum systems
A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries.

Scientists may have discovered whole new class of black holes
New research shows that astronomers' search for black holes might have been missing an entire class of black holes that they didn't know existed.

Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.

Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.

Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Read More: Black Holes News and Black Holes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to