Laser technology: New trick for infrared laser pulses

November 23, 2020

Ordinary solid-state lasers, as used in laser pointers, generate light in the visible range. For many applications, however, such as the detection of molecules, radiation in the mid-infrared range is needed. Such infrared lasers are much more difficult to manufacture, especially if the laser radiation is required in the form of extremely short, intense pulses.

For a long time, scientists have been looking for simple methods to produce such infrared laser pulses - at the TU Wien this has now been achieved, in cooperation with Harvard University. The new technology does not require large experimental setups; it can be easily miniaturized and is therefore particularly interesting for practical applications. The new results have now been presented in the journal "Nature Communications".

The frequency comb

"We generate laser light in the mid-infrared range with tailor-made quantum cascade lasers manufactured in the ultra-modern Nano-Center of TU Wien", says Johannes Hillbrand from the Institute of Solid State Electronics at the TU Vienna, first author of the study. While in ordinary solid-state lasers the type of light emitted depends on the atoms in the material, in quantum cascade lasers tiny structures in the nanometer range are crucial. By designing these structures appropriately, the wavelength of the light can be precisely adjusted.

"Our quantum cascade lasers do not just deliver a single color of light, but a whole range of different frequencies," says Ass.Prof. Benedikt Schwarz, who led the research work in his ERC grant funded project. "These frequencies are arranged very regularly, always with the same distance in between, like the teeth of a comb. Therefore, such a spectrum is called a frequency comb".

Light is like a pendulum

However, it is not only the frequencies emitted by such a quantum cascade laser that are decisive, but also the phase with which the respective light waves oscillate. "You can compare this to two pendulums connected by a rubber band," explains Johannes Hillbrand. "They can either swing back and forth, exactly in parallel, or opposite to each other, so that they either swing towards each other or away from each other. And these two vibration modes have slightly different frequencies."

It is quite similar with laser light, which is composed of different wavelengths: The individual light waves of the frequency comb can oscillate exactly in sync - then they superimpose each other in an optimal way and can generate short, intense laser pulses. Or there can be shift between their oscillations, in which case no pulses are created, but laser light with an almost continuous intensity.

The light modulator

"In quantum cascade lasers, it has previously been difficult to switch back and forth between these two variants," says Johannes Hillbrand. "However, we have built a tiny modulator into our quantum cascade laser, which the light waves pass by again and again." An alternating electrical voltage is applied to this modulator. Depending on the frequency and strength of the voltage, different light oscillations can be excited in the laser.

"If you drive this modulator at exactly the right frequency, you can achieve that the different frequencies of our frequency comb all oscillate at exactly in sync," says Benedikt Schwarz. "This makes it possible to combine these frequencies into short, intense laser pulses - more than 12 billion times per second".

This level of control over short infrared laser pulses was previously not possible with semiconductor lasers. Similar types of light could at best only be generated using very expensive and lossy methods. "Our technology has the decisive advantage that it can be miniaturized," emphasizes Benedikt Schwarz. "One could use it to build compact measuring instruments that use these special laser beams to search for very specific molecules in a gas sample, for example. Thanks to the high light intensity of the laser pulses, measurements that require two photons at the same time are also possible.
-end-
Contact

Dr. Benedikt Schwarz
Institute for Solid State Electronics
TU Wien
Gußhausstraße 25, 1040 Vienna
Phone: +43 1 58801 36214
e-mail: benedikt.schwarz@tuwien.ac.at

Vienna University of Technology

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.