Boosting stem cell activity can enhance immunotherapy benefits

November 23, 2020

WASHINGTON --- Immune-system T cells have been reprogrammed into regenerative stem cell-like memory (TSCM) cells that are long-lived, highly active "super immune cells" with strong antitumor activity, according to new research from
The reprogramming involves a novel approach the researchers developed that inhibits the activity of proteins known as MEK1/2. Currently, several MEK inhibitors are used to effectively treat melanoma, but this study demonstrates that MEK inhibitors don't just target certain types of cancer cells, but rather, more broadly, reprogram T cells to fight many types of cancer.

The finding appears November 23, 2020, in Nature Immunology.

"Although immunotherapies have improved survival for cancer patients over recent years, survival rates remain sub-optimal. Therefore, there is an urgent need to develop novel, more effective anti-cancer immunotherapies," says Samir N. Khleif, MD, director of The Jeannie and Tony Loop Immuno-Oncology Laboratory and head of the team that conducted this research. "Our research shows that using drugs that have already been approved for human use may significantly enhance currently available immune therapeutic approaches, thereby leading to better and more durable anti-cancer responses."

The researchers performed experiments with human cells in the lab and then confirmed the effects of such an approach in mice. The investigators were able to not only identify a novel strategy to reprogram T cells into TSCM cells by using MEK1/2 inhibition, they were able to identify a novel molecular mechanism by which the TSCMs were induced.

The scientists found that reprograming T cells into TSCM can significantly improve T cell therapies for cancer patients. T cell therapy is a process that is widely used in specific cancers and in clinical trials, where immune-system T cells are separated out from a patient's blood, engineered and expanded with special tumor-targeting capabilities and infused back into the patient to fight cancer. In their experiments, human T cells were reprogrammed with MEK inhibitors into TSCM; additionally, when treating mice with MEK inhibitors, the reprogramming of T cells was also found to induce effective TSCMs.

"Stem cell research has played a vital role this century in enhancing the progress against many diseases. Recent public and private support for stem cell therapy is very gratifying," says Khleif. "Having stem cell research-specific funding from both governmental and private funders will greatly help accelerate the development of this under-utilized area of research."

Now that MEK inhibitors have been shown to enhance an anti-tumor immune response, the researchers are starting to look into designing clinical trials to test their research approach in cancer patients. "Our approach is quite novel and we're anxious to see it put to use in the clinical arena as soon as possible," concludes Khleif.
-end-
In addition to Khleif, authors of the manuscript at Lombardi include Vivek Verma?, Nazli Jafarzadeh, Subhadip Kundu, Zhinuo Jiang?, Fatmah Alolaqi, Pankaj Gaur, Mikayel Mkrtichyan, Jose Lopez, Rahul Nandre, and Seema Gupta?. Other authors include Shannon Boi? and Benjamin Youngblood Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN; Yiping Fan, Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN; Peng Zeng, Paulo C. Rodriguez, and Shamim Ahmad, Georgia Cancer Center, Augusta University, Augusta, GA; Simon T. Barry, Viia E. Valge-Archer and Paul D. Smith, Bioscience, Early Oncology, AstraZeneca, Cambridge, UK; and Jacques Banchereau?, The Jackson Laboratory for Genomic Medicine, Farmington, CT.

Khleif and Verma are named inventors on the patent application titled "Induced Stem Memory T-cells and Methods of Use Thereof" that relates to this research.

This study was supported in part by NIH grants R01-CA237311 01A1, R01-CA184185, R01-CA233512 and P30-CA076292 and a Florida Department of Health grant no. 20B04.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center is designated by the National Cancer Institute (NCI) as a comprehensive cancer center. A part of Georgetown University Medical Center, Georgetown Lombardi is the only comprehensive cancer center in the Washington D.C. area. It serves as the research engine for MedStar Health, Georgetown University's clinical partner. Georgetown Lombardi is also an NCI recognized consortium with John Theurer Cancer Center/Hackensack Meridian Health in Bergen County, New Jersey. The consortium reflects an integrated cancer research enterprise with scientists and physician-researchers from both locations. Georgetown Lombardi seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic, translational and clinical research, patient care, community education and outreach to service communities throughout the Washington region, while its consortium member John Theurer Cancer Center/Hackensack Meridian Health serves communities in northern New Jersey. Georgetown Lombardi is a member of the NCI Community Oncology Research Program (UG1CA239758). Georgetown Lombardi is supported in part by a National Cancer Institute Cancer Center Support Grant (P30CA051008). Connect with Georgetown Lombardi on Facebook (

Georgetown University Medical Center

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.