Lab closed? Head to the kitchen

November 23, 2020

VIRTUAL MEETING (CST), November 22, 2020 -- Mechanical engineer Roberto Zenit spent the summer of 2019 trying to solve a problem that now plagues science departments around the world: How can hands-on fluid dynamics experiments, usually carried out in well-stocked lab rooms, be moved off campus? Since the pandemic hit, leading researchers like Zenit have found creative ways for students to explore flow at home.

Zenit's answer, ultimately, came down to pancakes. He teaches a fluid dynamics lab class at Brown University, and one experiment requires students to measure viscosity, which is often done by measuring how quickly small spheres fall through thick liquids and settle at the bottom. But Zenit realized he didn't have to do it that way. The kitchen is rich with viscous fluids, and all he had to do was pick one.

Why not pancake batter?

This fall, students in his class, wherever they were sequestered, had to mix up pancake batter, pour it on a horizontal surface, and measure how quickly the radius expanded. "By measuring the rate at which this blob grows in time you can back-calculate the viscosity," said Zenit.

Zenit described the experiment during a mini-symposium on kitchen flows at the 73rd Annual Meeting of the American Physical Society's Division of Fluid Dynamics. In addition to his viscosity-through-pancakes project, the symposium included new research on how fluids mix with each other and how they incorporate solid particles (as in batter or dough). Researchers from the University of Cambridge described new findings on hydraulic jumps--those eerily smooth circles of water, surrounded by turbulence, that form directly beneath a running kitchen faucet.

Chemical engineer Endre Mossige, a postdoctoral researcher at Stanford University, organized the symposium. "Kitchen flow experiments are so easy to do," he said. "You need so little equipment to extract such useful information about fluid dynamics."

The kitchen is a natural place to look for inspiration, said Jan Vermant, an engineer at ETH Zurich. "In the kitchen we do a lot with high-interface materials," he said. "You have to mix fluids and air and make emulsions, and work with bubbles. This is a fundamental problem of food projects, and one known by chefs all over the world."

Vermant reported on his group's recent work, which tackled a beer problem by turning it into a fluid dynamics problem. He studies thin films, and in recent research he's been studying the stability of foam in beers and breads. Beermakers, he said, check on the fermentation progress of new brews by looking at the stability of foam. But, he said, the process is very "hand-wavy." When he began looking at beer brewing through the lens of fluid dynamics, he found a rich research environment.

Beer bubbles contain a rich variety of environments: capillary flows, soap films, and protein aggregation. "Basically, they have all the mechanisms one can design as an engineer," he said. His group found, to their surprise, that even though most beers have foam, different beers have different mechanisms behind those foams. Some foams act like soap films; others develop robust protein networks at the surface.

"They each highlight different aspects of the problem nicely," said Vermant. In subsequent work, his group took a similarly close look at interfacial phenomena in breads--and similarly found a variety of behaviors. "They have this rich diversity of mechanisms to stabilize foam structures," he said.

Vermant said the work isn't just about beer and bread; it may also serve as inspiration for new materials. "We can mimic those systems and might make foams using the same principles as beer foams," he said, which could be useful for applications ranging from spray insulation to protective foams for crops.

At Brown, Zenit said not every student successfully completed the experiment. "Some of them took my advice too literally, and did it in a hot pan," he said. Cooking the pancake changed the viscosity--freezing the batter in place--which meant the students don't have usable data. (But they did have breakfast.)

He said turning to pancakes during the pandemic has opened his eyes to different ways to teach fundamental ideas like viscosity. "In the regular experiments, you drop this sphere in a container and measure it," he said. The fluid, he says, is reduced to its measurement. With batter, the student experiences the concept. "With the pancakes, you get to feel the viscosity."

Mini-Symposium: Kitchen Flows
LIVE: 9:50 a.m. - 12:26 p.m. CST, Monday, November 23, 2020
CONTACT: Endre Mossige,


Make a Pancake: Learn About Viscosity
LIVE: 12:00 p.m. - 12:26 p.m. CST, Monday, November 23, 2020
CONTACT: Roberto Zenit,

Kitchen Sink Hydraulic Jumps; Unravelling the Fundamental Nature of Interfacial Flows
LIVE: 9:50 a.m. - 10:16 a.m. CST, Monday, November 23, 2020
CONTACT: Rajesh K Bhagat,

Thin Film Flows : Beer, Bread and Breaking-Up
LIVE: 11:34 a.m. - 12:00 p.m. CST, Monday, November 23, 2020
CONTACT: Endre Mossige,


Meeting Website:
Scientific Program:

Complimentary registration is available to credentialed media for the express purpose of gathering and reporting news and information from the meeting. If you have not previously obtained APS press credentials (i.e. attended other APS meetings as press or receive the APS journals tip sheet), please submit a request at


The Division of Fluid Dynamics of the American Physical Society, established in 1947, exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic, and gaseous states of matter under all conditions of temperature and pressure.


The American Physical Society (APS) is a nonprofit membership organization working to advance and diffuse the knowledge of physics through its outstanding research journals, scientific meetings, and education, outreach, advocacy, and international activities. APS represents over 55,000 members, including physicists in academia, national laboratories, and industry in the United States and throughout the world. Society offices are located in College Park, Maryland (Headquarters), Ridge, New York, and Washington, DC.

American Physical Society

Related Beer Articles from Brightsurf:

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

Consumers can distinguish between bitter tastes in beer -- doesn't alter liking
Although most beer consumers can distinguish between different bitter tastes in beer, this does not appear to influence which beer they like.

Beer was here! A new microstructural marker for malting in the archaeological record
A new method for reliably identifying the presence of beer or other malted foodstuffs in archaeological finds is described in a study published May 6, 2020 in the open-access journal PLOS ONE by Andreas G.

Brewing beer that tastes fresh longer
Unlike wine, which generally improves with time, beer does not age well.

Money spent on beer ads linked to underage drinking
Advertising budgets and strategies used by beer companies appear to influence underage drinking, according to new research.

Why you love coffee and beer
Why do you swig bitter, dark roast coffee while your coworker guzzles sweet cola?

Beer and fodder crop has been deteriorating for 6,000 years
The diversity of the crop sorghum, a cereal used to make alcoholic drinks, has been decreasing over time due to agricultural practice.

Keeping heavy metals out of beer and wine
A frosty mug of beer or ruby-red glass of wine just wouldn't be the same if the liquid was murky or gritty.

Investigating cell stress for better health -- and better beer
Human beings are not the only ones who suffer from stress -- even microorganisms can be affected.

Store craft beer in a cool place and consume it as fresh as possible
A new study by the Leibniz-Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM) shows that craft beer should be kept cool and consumed as fresh as possible.

Read More: Beer News and Beer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to