Puzzle of galactic evolution solved

November 23, 1999

NOTE TO PHOTO EDITORS: A high-resolution image is available for downloading at: http://www.news.wisc.edu/newsphotos/wakker.html

MADISON - Massive clouds of gas, discovered long ago but only recently identified as being within the margins of the Milky Way, play a key role in the ability of the galaxy to churn out new stars by raining gas onto the plane of the galaxy, a new report suggests.

Writing this week in the scientific journal Nature, Bart P. Wakker, a University of Wisconsin-Madison astronomer, and colleagues have chipped away at a three-decade-old mystery about the nature and role of what astronomers call high-velocity clouds. In the process, they've discovered a mechanism by which the galaxy is seeded with the stuff of stars and solved a long-standing question of galactic evolution.

Discovered 35 years ago, the clouds were an enigma because they behave differently than most galactic objects -- coursing through space at high speeds and not neatly rotating along with the rest of the galaxy. Moreover, scientists could never pinpoint their exact location, with distance estimates ranging from a few hundred light years to 10 million light years, an estimate that would place them well beyond the pale of the Milky Way.

But improved instrumentation, such as new large ground-based telescopes and the orbiting Hubble Space Telescope, recently allowed astronomers to determine that one such cloud lies about 20,000 light years from Earth in the halo of the Milky Way, a region high above the star-studded plane of the galaxy. And now, with the help of Hubble, Wakker and his colleagues have provided astronomers with measurements that reveal an inventory of some of the heavy elements in another high-velocity cloud which, they suggest, lies between 10,000 and 40,000 light years above the plane of the galaxy.

The new evidence, said Wakker, strongly suggests that some of the clouds play a key role in the chemical evolution of the galaxy by showering it with metal-poor gas that counteracts a buildup of heavy elements within the stars and gas found in the disk of the Milky Way.

Every star in the Milky Way was born of gas millions or billions of years ago, and they constantly turn hydrogen into helium or heavier elements like metals. They shed these metals back into interstellar space, a scenario that suggests recently-formed stars should be richer in metals than old stars. Yet astronomers observe that most stars in the disk of the galaxy have similar heavy element concentrations no matter how old or young they are.

"This rain of gas," Wakker said, "is material that has never been in the Milky Way before, suggesting, then, that metal production by stars is offset by this influx of metal-poor gas."

The new Hubble observations conform to a popular theory that there is a continual inflow of material into the galaxy to account for the continuing formation of stars, as well as their chemical composition. Competing theories -- ranging from the idea that, in the past, stars may have been more efficient at producing heavy elements to the notion of unknown processes at work -- can now be discarded, Wakker said.

"You don't need any other explanations anymore," he said, "because we now know that this gas is raining down onto the plane of the galaxy."

The finding also explains how the Milky Way can create, on average, a new star each year without running out of its supply of gas after a tenth of its lifetime.

The cloud observed by Wakker is estimated to contribute about one-fifth of a solar mass per year. But there are other such high-velocity clouds, Wakker noted, that can provide the balance of new gas needed for the galaxy to form a new star each year.

The origin of this accreting, low-metal gas remains a mystery. It could be gas left over from the formation of the so-called Local Group of galaxies that includes the Andromeda Nebula. Alternatively, it may be that the Milky Way is still forming, continuously gathering gas from near the edge of its sphere of influence. Or, said Wakker, the clouds might have been stripped away from passing dwarf galaxies.
-end-
-- Terry Devitt (608) 262-8282, trdevitt@facstaff.wisc.edu

University of Wisconsin-Madison

Related Clouds Articles from Brightsurf:

Seeing objects through clouds and fog
Using a new algorithm, Stanford researchers have reconstructed the movements of individual particles of light to see through clouds, fog and other obstructions.

Turbulence creates ice in clouds
Vertical air motions increase ice formation in mixed-phase clouds. This correlation was predicted theoretically for a long time, but could now be observed for the first time in nature.

Tiny particles lead to brighter clouds in the tropics
When clouds loft tropical air masses higher in the atmosphere, that air can carry up gases that form into tiny particles, starting a process that may end up brightening lower-level clouds, according to a CIRES-led study published today in Nature.

Life's building blocks may have formed in interstellar clouds
An experiment shows that one of the basic units of life -- nucleobases -- could have originated within giant gas clouds interspersed between the stars.

Conceptual model can explain how thunderstorm clouds bunch together
Understanding how the weather and climate change is one of the most important challenges in science today.

Meteors help Martian clouds form
Researchers think they've solved the long-standing mystery of how Mars got all of its clouds.

We've been thinking of how ice forms in cirrus clouds all wrong
Pores in atmospheric particles allow water to condense, leading to the formation of ice crystals in humid but unsaturated air.

Scientists explain formation of lunar dust clouds
Physicists from the Higher School of Economics and Space Research Institute have identified a mechanism explaining the appearance of two dusty plasma clouds resulting from a meteoroid that impacted the surface of the Moon.

Bursting the clouds for better communication
We live in an age of long-range information. Research is turning towards the use of lasers which have several advantages.

Magellanic Clouds duo may have been a trio
Two of the closest galaxies to the Milky Way--the Large and Small Magellanic Clouds--may have had a third companion, astronomers believe.

Read More: Clouds News and Clouds Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.