Potential malaria drug target identified

November 24, 2005

Researchers have identified an enzyme crucial to the malaria parasite's invasion of red blood cells, according to a study in the open-access journal, PLoS Pathogens.

"The most exciting practical implication of this work is that it identifies a potential drug target that is quite different from anything that is targeted by existing antimalarial drugs," Blackman says. "This is very important, since it is widely agreed that the best way to prevent the appearance of drug resistance in any pathogen is to use combinations of drugs that target distinct biochemical pathways."

The most severe form of malaria, a disease that affects over 300 million people annually, is caused by the single-celled parasite Plasmodium falciparum, which was the focus of the study.

A number of different proteins on the surface of malaria parasites help the invaders bind to red blood cells. But once attached to host blood cells, the parasites need to shed the "sticky" surface proteins that would otherwise interfere with entrance into the cell.

"What we have discovered is the parasite enzyme -we refer to it as a 'sheddase'- which sheds the sticky proteins," says Michael Blackman, senior author of the study and parasitologist at London's National Institute for Medical Research. The enzyme, called PfSUB2, is required for the parasites to invade cells; without it, the parasites die.

The results also shed light on the fundamental mechanisms malaria parasites use to infect cells. "The malaria parasite is related to several other major pathogens, all of which invade cells in a similar manner, so work such as this can have wide-ranging implications," according to Blackman.

Blackman's team has worked on malarial surface proteins for over 15 years. "We predicted that this enzyme must have the capacity to 'move' across the surface of the parasite, since the proteins that are shed are themselves distributed all over the parasite surface," he says.

A major challenge in the study was to visualize that motion. "To overcome this, we genetically modified the parasite by 'tagging' PfSUB2 so that we could visually follow its movement within the parasite. It was only by doing this that we were able to see that PfSUB2 is secreted onto and across the parasite surface," he says.

The enzyme is stored in and released from cellular compartments near the tip of the parasite, according to the study. Once on the surface, the enzyme attaches to a motor that shuttles it from front to back, liberating the sticky surface proteins. With these proteins removed, the parasite gains entrance into a red blood cell. The entire invasion lasts about 30 seconds.

By designing a specific inhibitor that impeded the ability to shed the sticky proteins, Blackman and his team interfered with the enzyme's normal functioning. A drug--yet to be designed--could possibly do the same, preventing the parasites from infecting blood cells.
-end-
CITATION: Harris PK, Yeoh S, Dluzewski AR, O'Donnell RA, Withers-Martinez C, et al. (2005) Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 1(3): e29.

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.doi.org/10.1371/journal.ppat.0010029

Contact:

Michael J. Blackman PhD
Division of Parasitology
National Institute for Medical Research
The Ridgeway, Mill Hill
London NW7 1AA, UK
mblackm@nimr.mrc.ac.uk
Tel (office): 44-208-816-2127
Fax: 4-420-881-6730
http://www.nimr.mrc.ac.uk/parasitol/blackman/

PLEASE MENTION THE OPEN-ACCESS JOURNAL PLoS Pathogens (www.plospathogens.org) AS THE SOURCE FOR THESE ARTICLES AND PROVIDE A LINK TO THE FREELY-AVAILABLE TEXT. THANK YOU.

All works published in PLoS Pathogens are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
PLoS Pathogens press
Public Library of Science
185 Berry Street, Suite 3100
San Francisco, CA 94107
US: 1-415-568-3451
UK: 44-122-346-3335

PLOS

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.