Panamanian termite goes ballistic: Fastest mandible strike in the world

November 24, 2008

A single hit on the head by the termite Termes panamensis (Snyder), which possesses the fastest mandible strike ever recorded, is sufficient to kill a would-be nest invader, report Marc Seid and Jeremy Niven, post-doctoral fellows at the Smithsonian Tropical Research Institute and Rudolf Scheffrahn from the University of Florida.

Niven and Seid conducted the study at the Smithsonian's new neurobiology laboratory in Panama, established by a donation from the Frank Levinson Family Foundation. The laboratory was built to use Panama's abundant insect biodiversity to understand the evolution of brain miniaturization.

"Ultimately, we're interested in the evolution of termite soldiers' brains and how they employ different types of defensive weaponry," says Seid. Footage of the soldier termite's jaws as they strike an invader at almost 70 meters per second was captured on a high speed video camera in the laboratory at 40,000 frames per second. "Many insects move much faster than a human eye can see so we knew that we needed high speed cameras to capture their behavior, but we weren't expecting anything this fast. If you don't know about the behavior, you can't hope to understand the brain," Seid adds.

Why are the termites so fast? When insects become small they have difficulty generating forces that inflict damage. "To create a large impact force with a light object you need to reach very high velocities before impact," Niven explains.

The Panamanian termite's strike is the fastest mandible strike recorded, albeit over a very short distance. Because a termite soldier faces down its foe inside a narrow tunnel and has little room to parry and little time to waste, this death blow proves to be incredibly efficient.

The force for the blow is stored by deforming the jaws, which are held pressed against one another until the strike is triggered. This strategy of storing up energy from the muscles to produce fast movements is employed by locusts, trap-jaw ants and froghoppers. "The termites need to store energy to generate enough destructive force. They appear to store the energy in their mandibles but we still don't know how they do this--that's the next question," says Niven.
-end-
A full report of the study appears in the Nov. 25, 2008 issue of the journal Current Biology.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. http://stri.org.

Smithsonian Tropical Research Institute

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.