ASU joins pathbreaking radio telescope project to study early universe

November 24, 2014

Arizona State University has joined with 14 other institutions in Australia, India, New Zealand and the United States in a radio telescope project that focuses on the early universe and the birth and formation of the first galaxies.

The radio telescope is the Murchison Widefield Array (MWA), located in the Shire of Murchison, Western Australia. The Shire, isolated and sparsely populated, has no villages or towns, and consists of only about 30 cattle and sheep stations (ranches), with a combined population of around 100. These are spread over about 20,000 square miles (50,000 square kilometers).

The telescope is constructed of 2,048 dipole antennas, grouped into four-by-four arrays called tiles. Each dipole antenna spans about 30 inches (74 centimeters). Most of the tiles (112) scatter across a core section 1 mile (1.5 kilometers) in diameter, with the remaining 16 tiles placed outside the core, yielding baseline distances of about 2 miles (3 kilometers).

The antennas and receivers operate at low radio frequencies and are optimized for radio waves in the 80-300 Megahertz range - the same frequencies used for FM radio and broadcast TV. Hence, Murchison's geographic isolation provides great advantages.

"A dense-core-plus-outliers arrangement gives sensitive, wide-field views from the central tiles," says Judd Bowman, associate professor of astronomy in the School of Earth and Space Exploration (SESE) and project scientist for the telescope array. "And the outliers provide high-resolution imaging for solar outbursts and extragalactic sources, other areas of focus in the telescope's scientific program."

Research opportunities for ASU astronomers

The telescope program will provide many opportunities for scientists, researchers and students in SESE, Bowman says. "As a partner institution in the telescope, any faculty member at ASU can join the project and receive access to observing data."

Three ASU undergraduates traveled with Bowman to Australia to help with the construction and commissioning of the telescope and related experiments at the site. The telescope is already being used by graduate students and two postdoctoral scholars at ASU for their research. For example, ASU researchers are currently using the telescope to search for traces of relic radio waves from primordial gas surrounding the first stars and galaxies at a time, more than 13 billion years ago, when the universe was less than a billion years old.

Bowman says, "This telescope complements very well the observational cosmology efforts already underway at ASU to observe the oldest galaxies in the universe. With the MWA, while we won't see the galaxies themselves, we hope to detect the cosmic fingerprints those galaxies left in the intergalactic gas around them."

Danny Jacobs, NSF Postdoctoral Fellow in SESE, is helping to coordinate the analysis of more than a thousand terabytes of data already acquired by the telescope. "The MWA is fixed to the ground and sees the entire sky," he explains. To unpack the signals and extract the data requires powerful computer processing. "To an unprecedented degree, the MWA is a software telescope. We're really pushing the limits of what our computers can do."

The Murchison Widefield Array has four elements, or research avenues, that make up its scientific program. These are: (1) exploration of the Cosmic Dawn and epoch of reionization, the period when the first stars and galaxies formed in the early universe; (2) radio emission from the Milky Way Galaxy and extragalactic sources, which is both a complicating foreground "fog" for observations and an interesting scientific target of its own; (3) searching for transient and variable radio events that are rare and faint, and which occur on timescales from seconds to months; and (4) space weather, the study of solar outbursts as they travel from the sun's surface to Earth.

Along with ASU's new role in the project, Bowman notes, SESE is hosting an international scientific conference in December 2014. It will be based around the Murchison Widefield Array and the initial science results from both it and other low-frequency radio telescopes.
-end-
The School of Earth and Space Exploration is an academic unit of ASU's College of Liberal Arts and Sciences.

Arizona State University

Related Astronomy Articles from Brightsurf:

Spitzer space telescope legacy chronicled in Nature Astronomy
A national team of scientists Thursday published in the journal Nature Astronomy two papers that provide an inventory of the major discoveries made possible thanks to Spitzer and offer guidance on where the next generation of explorers should point the James Webb Space Telescope (JWST) when it launches in October 2021.

New technology is a 'science multiplier' for astronomy
A new study has tracked the long-term impact of early seed funding obtained from the National Science Foundation on many key advances in astronomy over the past three decades.

Powerful new AI technique detects and classifies galaxies in astronomy image data
Researchers at UC Santa Cruz have developed a powerful new computer program called Morpheus that can analyze astronomical image data pixel by pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Astronomy student discovers 17 new planets, including Earth-sized world
University of British Columbia astronomy student Michelle Kunimoto has discovered 17 new planets, including a potentially habitable, Earth-sized world, by combing through data gathered by NASA's Kepler mission.

Task force recommends changes to increase African-American physics and astronomy students
Due to long-term and systemic issues leading to the consistent exclusion of African-Americans in physics and astronomy, a task force is recommending sweeping changes and calling for awareness into the number and experiences of African-American students studying the fields.

How to observe a 'black hole symphony' using gravitational wave astronomy
New research led by Vanderbilt astrophysicist Karan Jani presents a compelling roadmap for capturing intermediate-mass black hole activity.

Graphene sets the stage for the next generation of THz astronomy detectors
Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes.

3D holograms bringing astronomy to life
Scientists unravelling the mysteries of star cluster formation have taken inspiration from a 19th century magic trick, to help explain their work to the public.

The vibrating universe: Making astronomy accessible to the deaf
Astronomers at the University of California, Riverside, have teamed with teachers at the California School for the Deaf, Riverside, or CSDR, to design an astronomy workshop for students with hearing loss that can be easily used in classrooms, museums, fairs, and other public events.

Prehistoric cave art reveals ancient use of complex astronomy
As far back as 40,000 years ago, humans kept track of time using relatively sophisticated knowledge of the stars

Read More: Astronomy News and Astronomy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.