Excessive contact between cellular organelles disrupts metabolism in obesity

November 24, 2014

Boston, MA - Researchers at Harvard School of Public Health (HSPH) have found a novel mechanism causing type 2 diabetes that could be targeted to prevent or treat the disease. The research highlights a previously unrecognized molecular pathway that contributes to the malfunction of liver cells in obesity, leading to insulin resistance and diabetes.

The study appears online November 24, 2014 in Nature Medicine.

"While it is well-established that obesity generates cellular and molecular stress leading to abnormal functioning of many cellular processes, the mechanisms remain incompletely understood," said senior author Gökhan S. Hotamisligil, chair of the Department of Genetics and Complex Diseases and the Sabri Ülker Center for Nutrient, Genetic, and Metabolic Research. "Our study revealed that one of these mechanisms involves metabolic stress-induced structural changes within liver cells that compromise their function."

The researchers used electron microscopy and other imaging techniques to view thousands of cells from the liver tissue of lean and obese mice. They counted each of the contact points between two cellular organelles -- the endoplasmic reticulum (ER) and mitochondria -- and demonstrated for the first time that the number of these connections, called MAMs, markedly increase during obesity.

Under normal conditions, these connections are necessary for the function of both organelles. However, co-authors Ana Paula Arruda, Benedicte Pers, and colleagues showed that the increased connectivity resulted in an excess of calcium being transferred from the ER to the mitochondria, leading to mitochondrial stress. In an elegant proof-of-principle approach, the researchers used synthetic molecules to decrease the physical distance between the ER and mitochondria in cells and in liver tissue and found that this intervention impaired mitochondrial function and made mice more sensitive to high fat diet-induced insulin resistance and diabetes.

The researchers also demonstrated that by disrupting the ER-mitochondrial interactions and calcium transfer, they could markedly improve the metabolic health of obese diabetic mice -- pointing the way to a potential treatment target in humans. "It turns out that the enhanced MAM formation in obesity is too much of a good thing, leading to functional failure of multiple organelles and amplification of cellular stress," Hotamisligil said.
-end-
HSPH authors included lead authors Ana Paula Arruda and Benedicte Pers, Günes Parlakgül, Ekin Guney, and Karen Inouye.

This work was supported in part by the National Institutes of Health (DK52539 and 1RC4-DK090942). Ana Paula Arruda is supported by PEW Charitable Trusts. Benedicte Pers is supported by the Alfred Benzon Foundation (Denmark).

"Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity," Ana Paula Arruda, Benedicte M. Pers, Güneş Parlakgül, Ekin Güney, Karen Inouye, and Gökhan S. Hotamisligil, Nature Medicine, online November 24, 2014, DOI: 10.1038/nm.3735

Harvard School of Public Health brings together dedicated experts from many disciplines to educate new generations of global health leaders and produce powerful ideas that improve the lives and health of people everywhere. As a community of leading scientists, educators, and students, we work together to take innovative ideas from the laboratory to people's lives--not only making scientific breakthroughs, but also working to change individual behaviors, public policies, and health care practices. Each year, more than 400 faculty members at HSPH teach 1,000-plus full-time students from around the world and train thousands more through online and executive education courses. Founded in 1913 as the Harvard-MIT School of Health Officers, the School is recognized as America's oldest professional training program in public health. For more information, visit http://www.hsph.harvard.edu or contact Marge Dwyer, 617-432-8416.

HSPH on Twitter: http://twitter.com/HarvardHSPH

HSPH on Facebook: http://www.facebook.com/harvardpublichealth

HSPH on You Tube: http://www.youtube.com/user/HarvardPublicHealth

HSPH home page: http://www.hsph.harvard.edu

Harvard T.H. Chan School of Public Health

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.