An inside job: UC-designed nanoparticles infiltrate, kill cancer cells from within

November 24, 2014

Conventional treatment seeks to eradicate cancer cells by drugs and therapy delivered from outside the cell, which may also affect (and potentially harm) nearby normal cells.

In contrast to conventional cancer therapy, a University of Cincinnati team has developed several novel designs for iron-oxide based nanoparticles that detect, diagnose and destroy cancer cells using photo-thermal therapy (PTT). PTT uses the nanoparticles to focus light-induced heat energy only within the tumor, harming no adjacent normal cells.

The results of the UC work will be presented at the Materials Research Society Conference in Boston Nov. 30-Dec. 5 by Andrew Dunn, doctoral student in materials science engineering in UC's College of Engineering and Applied Science. Working with Dunn in this study are Donglu Shi, professor of materials science engineering in UC's College of Engineering and Applied Science; David Mast, associate professor of physics in UC's McMicken College of Arts and Sciences; and Giovanni Pauletti, associate professor in the James L. Winkle College of Pharmacy.

The UC study used the living cells of mice to successfully test the efficacy of their two-sided nanoparticle designs (one side for cell targeting and the other for treatment delivery) in combination with the PTT. However, the U.S. Food and Drug Administration has now approved the use of iron-oxide nanoparticles in humans. That means the photo-thermal effect of iron-oxide nanoparticles may show, in the next decade, a strong promise in human cancer therapy, likely with localized tumors.

HOW THE NANOPARTICLES WORK WITH PHOTOTHERMAL THERAPY

With this technology, a low-power laser beam is directed at the tumor where a small amount of magnetic iron-oxide nanoparticles are present, either by injecting the particles directly into the tumor or injecting them into the blood stream whereby the particles find and bind to the abnormal cancer cells via cell-specific targeting.

Sufficient heat is then generated locally by the laser light, raising the tumor temperature rapidly to above 43 degrees Celsius, and thereby burning the abnormal cancer cells. This particular PTT treatment does not involve any medicine, but only generates local heat within the tumor, therefore posing much less side effects than the traditional chemo or radiation therapies.

"This treatment is much more ideal because it goes straight to the cancer cell," says Shi. "The nanomaterials enter only the abnormal cells, illuminating those cells and then doing whatever it is you have designed them to do. In this case, it is to heat up hot enough to burn and kill the cancer cells, but not harm the surrounding normal cells."

Shi added that physicians are often frustrated with the current conventional means for early imaging of cancer cells through Medical Resonance Imaging or Computerized Tomography scans because the tumors are usually stage three or four before they can be detected. He stated, "With nanomaterial technology, we can detect the tumor early and kill it on sight at the same time."

CELL TARGETING

POTENTIAL DIY CANCER TREATMENT

The procedure can ultimately be carried out by the patient themselves after being trained how to direct a small laser light device to the affected area for a specified amount of time two to three times a day. This method can ultimately improve the success rate, as well as cut costs to the patient. This gives "point and shoot" a whole new meaning.

FUTURE RESEARCH DIRECTION

Future research in nanoparticle PTT will look at toxicity, biodegradability and compatibility issues. Shi said that the team is currently looking for other diverse biodegradable materials to use for the carriers such as plant chlorophylls like those in cabbage that are both edible and photothermal. This material is biocompatible and biodegradable and can potentially stay in the tumor cells until its job is finished, then dissolve and be passed out through the digestive system.
-end-
Support for this research was provided by a National Science Foundation grant under contract number MSF (1343568) titled "Development of Nanotechnology Minor Focused on Nano Biomedicine and Sustainable Energy."

University of Cincinnati

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.