Scientists identify bone cells that could help children who need corrective facial surgery

November 24, 2014

ANN ARBOR--Our bones are smart. Bones know that by adolescence it's time to stop growing longer and stronger, and from that point on bones keep their shape by healing injuries.

This question of why bones grow longer and stronger in children, but stay static in adults--yet retain the ability to heal themselves, has long perplexed scientists in the bone regeneration field. But researchers from the University of Michigan, Kyoto University and Harvard University believe they may have unearthed a big piece of this puzzle.

The team discovered that a certain subset of cartilage-making cells, known as chondrocytes, replicate themselves, make other bone cells and drive bone growth--findings that could lead to new treatments for children with facial deformities who normally have to wait until adulthood for corrective surgery.

The study by Dr. Noriaki Ono, U-M assistant professor of dentistry, and colleagues will appear online Nov. 24 in Nature Cell Biology.

It's long been thought that these chondrocytes die when children reached adolescence and their bones stopped growing, Ono said. However, the fact that bone still heals itself even without chondrocytes caused intense debate among researchers.

Ono's group found that some chondrocytes don't die, but rather transform themselves into other types of bone-growing and bone-healing cells.

"Up until now, the cells that drive this bone growth have not been understood very well. As an orthodontist myself, I have special interest in this aspect, especially for finding a cure for severe bone deformities of the face in children," he said. "If we can find a way to make bones that continue to grow along with the child, maybe we would be able to put these pieces of growing bones back into children and make their faces look much better than they do."

Ono said one of the challenges in the bone and cartilage field is that stem cells haven't really been identified. The only widely accepted idea is that certain stem cells help bones grow and heal, but that's only discussed in the context of adults with bone disorders such as osteoporosis.

Many factors cause craniofacial deformities, and all are devastating to children, he said. In children with Goldenhar syndrome, underdeveloped facial tissues can harm the developing jawbone. Another bone deformity called deformational plagiocephaly causes a child's head to grow asymmetrically.
-end-
The study is titled "A Subset of Chondrogenic Cells Provides Early Mesenchymal Progenitors in Growing Bones." Co-authors also include: Wanida Ono of the U-M School of Dentistry; Takashi Nagasawa of Kyoto University in Japan; and Henry Kronenberg, of Harvard Medical School and Massachusetts General Hospital.

Study

Noriaki Ono

U-M School of Dentistry

University of Michigan

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.