Eight MD Anderson faculty named as AAAS fellows

November 24, 2014

Their responsibilities may range from exploring the intricacies of biostatistics to bringing new drugs more rapidly to the patient, but eight faculty members from The University of Texas MD Anderson Cancer Center all share one honor - being named as Fellows by the American Association for the Advancement of Science.

The Fellows selected to receive this highly recognized honor include Ronald DePinho, M.D., Burton F. Dickey, M.D., Varsha Gandhi, Ph.D., John Mendelsohn, M.D., Jeff Molldrem, M.D., David Piwnica-Worms, M.D., Ph.D., Sanjay Shete, Ph.D, and Stephen Ullrich, Ph.D.

"It is indeed a tremendous accomplishment to be selected as an AAAS Fellow," said Ethan Dmitrovsky, M.D., provost and executive vice president at MD Anderson. "MD Anderson is known worldwide for its leading patient care, research and education and this recognition is a wonderful tribute to the men and women who each day bring their knowledge and dedication to our mission."

AAAS Fellows are elected by existing members of the 140-year-old organization, the world's largest general scientific society. MD Anderson now has 32 AAAS Fellows on its faculty with 23 elected in the last four years.

The AAAS Fellows named today includes:

Ronald DePinho, M.D., professor of cancer biology and president of MD Anderson

DePinho's investigations have produced an array of discoveries leading to better methods of early cancer detection, improved cancer patient care and new cancer drug development. The range of his research includes cancer drug and biomarker development, cancer gene discovery, stem cell biology, and development of genetically engineered mouse models to study cancer in humans. He was the first to show that the Myc family of oncogenes (cancer-causing genes) function through common cell signaling pathways to turn healthy cells malignant. DePinho established the concept of "tumor maintenance" to address the question of whether an original cancer-causing oncogene can remain active in maintaining a tumor despite the accumulation of many alterations in DNA during the malignant transformation process. This concept has contributed to cancer drug development by guiding identification of new therapeutic points of attack, as well as novel biomarkers that measure a patient's response to a drug during a course of treatment. His research also provided some of the first evidence that the p53 gene can suppress the development of some cancers by stimulating cell death. DePinho and Robert Eisenman, Ph.D., discovered a co-repressor complex that links a transcription factor and chromatin regulation in suppressing cancers. His lab also provided the first genetic evidence that a familial melanoma gene serves as a potent tumor suppressor in melanoma and other cancers. His most notable contributions concern the link between advancing age and increasing risk of cancer. He established three factors that unite to cause DNA rearrangements that spur many cancers. Beyond cancer, DePinho has established the role of telomere dysfuction in acquired and inherited degenerative disorders such as end-stage liver failure. His findings suggest there may be a "point of return" in which medicines might help severely aged organs to recover a youthful state. At MD Anderson, DePinho has established the Institute for Applied Cancer Science where his lab focuses on basic-to-translational research programs for brain, colorectal, pancreas and prostate cancers, as well as aging and neuro-degeneration.

Burton F. Dickey, M.D., professor of pulmonary medicine

Dickey's investigations include study of lung epithelial cells, which show great plasticity in structure, function and gene expression. In response to allergic inflammation, airway secretory cells produce large quantities of polymeric mucins, and his laboratory studies the molecular mechanism of mucin secretion, focusing on Munc18, Munc13, Syntaxin and Synaptotagmin proteins. Epithelial signaling by the beta-2-adrenoceptor promotes allergic inflammation and mucin production. Dickey's lab is studying the molecular mechanism of this phenomenon in collaboration with Richard A. Bond of the University of Houston. In response to TLR signaling, airway epithelial cells develop a high level of resistance to microbial infection, and Dickey is investigating the molecular mechanism in collaboration with Scott E. Evans, M.D., associate professor of pulmonary medicine, and developing a clinical therapeutic to prevent pneumonia. Airway inflammation also contributes to epithelial carcinogenesis, and Dickey has established mouse models of this phenomenon and is dissecting mechanisms in collaboration with Seyed J. Moghaddam, M.D., assistant professor of pulmonary medicine. For each of these programs, the laboratory uses primarily a mouse genetic approach, generating knockout and transgenic mice, and analyzing their responses in conditions of pathophysiologic challenge.

Varsha Gandhi, Ph.D., professor and department chair ad interim, experimental therapeutics

Gandhi's research focus is in the development of therapeutics for hematological malignancies. She uses biologic, biochemical, and molecular approaches to understand the metabolism and mechanism of action of different groups of chemotherapeutic agents. Based on mechanism of action of novel agents and biology and pathophysiology of the disease, her group tests these drugs in hematological malignancies. Currently, her group is working on several targets such as Met receptor tyrosine kinase in myeloma, Bcl-2 antagonists in leukemias, inhibitors of Pim kinase, Bruton's tyrosine kinase as well as PI3 kinase in heme malignancies, and novel small molecule inducers of apoptosis. Her research is translational in nature and her group validates the laboratory-tested hypotheses in the clinic using target tumor tissues. Based on mechanisms of action of chemotherapeutic agents, they also test and develop novel combination strategies. Gandhi has published more than 250 articles and serves on the editorial board of several journals including Clinical Cancer Research and Leukemia and Lymphoma.

John Mendelsohn, M.D., professor of experimental therapeutics, former president of MD Anderson

Mendelsohn served as president of MD Anderson from 1996 to 2011 through an incredibly productive period of nearly 15 years, during which time the institution more than doubled in size. He has an international reputation for his research on how the binding of growth factors to receptors on the surface of cells regulates cell functions.

Mendelsohn and collaborators produced monoclonal antibody 225, which inhibits human cancer cell proliferation by blocking the signaling pathways that are activated by the receptors for epidermal growth factor. His subsequent research in the laboratory and the clinic pioneered the universally adopted concept of anti-receptor therapy that targets key cell signaling pathways as a new form of cancer treatment. Antibody 225 (commercially known as Cetuximab, or Erbitux) against the receptor for epidermal growth factor was approved by the U.S. Food and Drug Administration for treatment of colon cancer in 2004 and for head and neck cancer in 2006. Mendelsohn is a recognized leader in the areas of clinical and translational research and has developed and tested new cancer therapies that target the genetic and molecular abnormalities that cause the disease. Such targeted drugs open the door to customizing treatment based on the factors that drive an individual patient's cancer. Mendelsohn's groundbreaking research on characterizing growth factor receptors and on blocking their stimulation of cell proliferation launched anti-receptor therapy as a cancer treatment.

Jeff Molldrem, M.D., professor of stem cell transplantation and cellular therapy

Molldrem's lab is exploring the development of immunotherapies for leukemia and other hematological diseases through an understanding of T-cell immunity against hematopoietic progenitors. Moldrem believes that T-cells target and eliminate these progenitors by recognizing determinants of self-antigens when tolerance has been reversed by aberrant self-antigen expression. As models, his lab has studied myeloid leukemia and MDS and has found that CD8 lymphocytes recognized the HLA-A2-restricted PR1 peptide, derived from both P3 and NE, due to aberrant subcellular localization and over-expression.

David Piwnica-Worms, M.D., Ph.D., professor and chair of cancer systems imaging

Piwnica-Worms studies the molecular imaging of signal transduction pathways and protein-protein interactions in vivo. His lab also is studying the dynamic analysis of the NF-kB, beta-catenin and EGFR signaling pathways, genetically-encoded reporters for bioluminescence, PET, and SPECT imaging, and high throughput screening with siRNA to functionalize the genome. His work also includes investigation of cell-penetrating activatable near-infrared fluorescent peptides for imaging and therapeutic cell-penetrating peptides, mechanisms and regulation of the ATP-binding cassette (ABC) superfamily of transporter proteins, and multidrug resistance in cancer; radiopharmaceutical chemistry, as well as medicinal utility of metal complexes.

Sanjay Shete, Ph.D., professor of biostatistics

Shete is a genetic epidemiologist with interests in developing statistical methods for genetic data. He is section chief of behavioral and social statistics in the division of quantitative sciences. He currently serves as the principal investigator for a genome-wide association study of head and neck cancer and is principal investigator with Reyes-Gibby, Dr.P.H., associate professor of emergency medicine, for a study of molecular epidemiology of neuropathic pain in head and neck cancer. He is also the principal investigator for studies on innovative multidisciplinary education: the statistical genetics of addiction. His ability to design and undertake creative genetic epidemiological studies in collaboration with other scientists is evidenced by the range of genetic investigations of complex disorders in which he has been involved. Shete is currently director of the biostatistics, bioinformatics and systems biology program at the Graduate School of Biomedical Sciences. Shete has institutional leadership responsibilities as vice-chair of one of the Institutional Review Boards. He was a member of Ethical, Legal and Social Issues Committee and currently a member of the scientific program committee of the International Genetic Epidemiology Society. He was a charter member of the Cardiovascular and Sleep Epidemiology Study Section for National Institute of Health. He is a fellow of the American Statistical Association. Currently, he is the editor-in-chief of the Genetic Epidemiology Journal.

Stephen Ullrich, Ph.D., professor of immunology

Ullrich's research focuses on the mechanisms underlying UV-induced immune suppression and immune suppression and immunotherapy of pancreatic cancer. He is particularly interested in the role of cell migration in UV-induced immune suppression. None of the energy contained within the UVB wavelengths of sunlight penetrate beyond the skin, so it is unclear how UV exposure induces systemic immune suppression. For years immunologists have recognized that UV-irradiation induces Langerhans cells to leave the skin and migrate to the draining lymph nodes, where they activate immune suppression. His laboratory has been instrumental in elucidating some of the key mechanisms mediating this action, including the activation of natural killer T cells to secrete IL-4 and a possible role for platelet activating factor (PAF). Ullrich has also demonstrated that UV exposure induces dermal mast cells to leave the skin and migrate to the draining lymph nodes, where they mediate immune suppression.

University of Texas M. D. Anderson Cancer Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.