Nav: Home

The corn snake genome sequenced for the first time

November 24, 2015

Among the 5 000 existing species of mammals, more than 100 have their genome sequenced, whereas the genomes of only 9 species of reptiles (among 10 000 species) are available to the scientific community. This is the reason why a team at the University of Geneva (UNIGE), Switzerland, has produced a large database including, among others, the newly-sequenced genome of the corn snake, a species increasingly used to understand the evolution of reptiles. Within the same laboratory, the researchers have discovered the exact mutation that causes albinism in that species, a result published today in Scientific Reports.

Genomics allows to better investigate the evolution of the living world. Indeed, describing the function of each gene should enable to unders- tand how the snake lost its limbs or how various skin colorations have evolved. Unfortunately, reptiles are poorly represented in genomic da- tabases. This is why Dr. Athanasia Tzika, researcher in the Department of genetics and evolution of the UNIGE Faculty of Sciences, has built a database including sequenced genomes from the major evolutionary lineages of reptiles: the Reptilian Transcriptomes Database 2.0. "Our aim was to produce ourselves a substantial portion of the missing data by sequencing all genes from several reptilian species. To reach this goal, we used tissues, such as the brain and the kidney, expressing the largest number of genes", says Athanasia Tzika. Multiple other teams also generated sequencing data but each one used different methods for data analysis, making difficult studies of the evolution of reptilian genomes. Hence, another part of Athanasia Tzika's work consisted into gathering these data and developing a bioinformatic approach allowing the pro- duction of a unified database, freely accessible and regularly updated. This tool will become useful for researchers all around the world working on the development and evolution of vertebrates in general and reptiles in particular.

The corn snake, a new model organism

Sequencing a genome is a tremendous task. It requires to determine the sequence of the full genome of the investigated animal, corresponding to two billions of nucleotides for the corn snake. DNA contains four basic molecules (the nucleotides) -ACGT-, which assemble by pairs (A with T and C with G) and constitute the sequence of each gene. To analyse the genome, one must read all the DNA by short fragments of 100 to 250 nucleotides that must then be assembled to reconstruct the enormous chain that forms each chromosome. Nowadays, scientists can perform such assemblies to build fragments of about one million nucleotides. This work has been performed in the team of Michel Milinkovitch, professor in the Department of Genetics and Evolution at UNIGE. "The objective was to obtain a genuine reptilian genomic model that people could rely on", explain Athanasia Tzika. "Here, we covered about 85% of the snake total genome size". "There is much additional work ahead" explains Asier Ullate, who also participated in the study, "because, to obtain a quality similar to that of the sequenced human genome, we need to assemble chromosomes which can form chains of more than 200 millions of nucleotides". But why the corn snake ? "This species is perfect for investigating the development and evolution of reptiles because it breeds easily, it is oviparous, and non-venomous. This species is also relevant to study the genetic determinism and evolution of skin colours, particularly important for the camouflage of these animals in their natural habitat. We are happy to announce that the corn snake joined the restricted group of model species allowing researchers to better understand the biological and physical mechanisms responsible for the evolution of the diversity and complexity of species", answers professor Milinkovitch.

Discovery of the mutation responsible of amelanism

In that same UNIGE laboratory, Suzanne Saenko collaborated with a Swedish team, to identify in the corn snake the mutation responsible for amelanism, a form of albinism due to a defect in the production of melanin (the black and brown pigments of the skin). The skin of the wild type corn snake exhibits a light orange background colour covered with a pattern of dark orange dorsal saddles and lateral blotches that are outlined with black. However, some individuals do not correspond to that standard morphology: they lack all signs of melanin in the skin and eyes. The Swiss team decided to search for the DNA mutation that determines that specific coloration. To this end, they bred wild-type corn snakes with amelanistic individuals and they sequenced each offspring born from that cross. "Thanks to that large amount of sequencing data, we identi- fied the malfunctioning gene", explains Milinkovitch. That gene is called OCA2 and codes for a receptor located in the membranes of intracellular compartments, called melanosomes, that contain melanin. This receptor controls the proper level of acidity allowing for the synthesis of melanin.

Thanks to the newly-sequenced genome of the corn snake, the precise identification of other mutations responsible for multiple variations of snake skin coloration will be greatly facilitated. This will allow us to save much time in our future research. As in amelanism, these spontaneous mutations that can appear randomly in any individual, are the fundamental fuel of evolution on which natural selection will act. Without mutations, genetic variation and novelties, explaining the evolution of new species, are impossible. UNIGE researchers will now attempt to understand how some mutant corn snakes exhibit strongly modified colours patterns such as longitudinal lines rather than transversal saddles, opening the way to comparisons among species with different skin co- lour patterns ... such as tigers and cheetahs for example.

Université de Genève

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at