Trinity researchers discover how the brain 're-wires' after disease

November 24, 2020

Trinity College researchers are studying how the brain re-wires itself in neurological disease. The team is building treatments for today's more common global conditions like Motor Neurone Disease (MND/ALS) and Spinal Muscular Atrophy and their findings could impact rehabilitation for patients, the discovery of effective drugs and quantifying the potential efficacy of new therapies.

The paper is published in the journal Clinical Neurophysiology here: https://bit.ly/38On53Y .

Up to now, scientific knowledge has told us that the polio virus affects the spinal cord, but not the brain. The Trinity team have shown this not to be the case; finding previously unknown changes also occurring in the brain networks. These findings suggest that brain networks engage in an abnormal but active communication with muscles in patient groups studied.

Today, polio is a rare condition in the world, as it has been reasonably controlled by vaccination over several decades. Incidentally, there are people in Ireland who have had the disease in the past and live with its consequences. Polio is a viral infection that damages the neural cells (neurons) in the spinal cord. Neurons take up, process and transmit information through electrical and chemical signals to other parts of the body, including muscles, for movement.

The study considerably increases the team's understanding of how the neurological and neurodegenerative diseases in parts of the nervous systems can affect brain networks , and how these networks can compensate following damage. This work helps them understand how the networks that control the movement work and how they influence and are influenced by different disease mechanisms.

Because the polio virus affects the same neurons in the spinal cord such as Motor Neuron Disease (MND/ALS) and childhood onset Spinal Muscular Atrophy ,this work is extremely important in driving our global effort to find treatments for these diseases.

The team, led by Professor Orla Hardiman, Professor of Neurology at the School of Medicine, Trinity College assessed the abnormal changes in the neural networks underlying human movements that take place due to neurological and neurodegenerative diseases. The assessment was made using neuro-electric measurement of the brain activity (brain waves or EEG) and the muscle activity (EMG) and some complex signal analysis.

The study will be supporting the emerging approaches to diagnosis and therapy (precision medicine) where the patients can be diagnosed and treated (with rehabilitation and new drug treatments) based on how exactly their neural networks are affected (on an individual basis). This will be applicable both to the patient group in this study, but also, in cognate conditions such as different forms of MND/ALS.

Dr Amina Coffey, PhD researcher, Clinical Medicine, Trinity College and first author, said:

"This study shows that neurophysiological markers can pick up changes in brain connectivity patterns that have implications in our understanding of other similar neurological conditions like Spinal Muscular Atrophy."

Dr Bahman Nasseroleslami, Assistant Professor, Clinical Medicine, Trinity College and senior author, said:

"This study is especially interesting, because it shows that advanced methods in neurophysiology and neural signal analysis can help to unravel new aspects of how different diseases disrupt our movements. These types of inexpensive non-invasive methods can be further developed for probing the different "neural networks" in humans that are responsible for different day-to-day movements and different diseases that affect them."

Professor Orla Hardiman, Professor of Neurology, Clinical Medicine, Trinity College and co-author, said:

"Our research findings show for the first time that the brain "rewires" in those who suffered from polio in childhood.

This has implications for our understanding of brain plasticity, and in the longer term for rehabilitation and new biomarker development."
-end-
The full paper can be viewed in the journal Clinical Neurophysiology here: https://bit.ly/38On53Y

Trinity College Dublin

Related Spinal Cord Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Improving treatment of spinal cord injuries
A group led by UC Riverside bioengineering professor Victor G.

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.

An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.

Read More: Spinal Cord News and Spinal Cord Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.