Treatment shows reduction in heart failure after myocardial infarction

November 24, 2020

While there are therapies to aid in overall heart health, there are very few preventative therapies for heart failure after a significant heart attack, a serious condition that has a very significant mortality. However, researchers at Baylor College of Medicine have found a potential treatment that has shown promising results in mice.

The findings, published in the latest edition of the Proceedings of the National Academy of Sciences, showed that stimulation of a steroid receptor coactivator, SRC-3, by a molecule known as MCB-613 after a heart attack prevented the scar and maladaptive repair of heart tissue that can lead to heart failure.

"Heart failure after a significant heart attack is a leading cause of death in humans. It often occurs over a few years; a person becomes weaker and weaker and eventually they die," said Dr. Bert O'Malley, professor of molecular and cellular biology at Baylor and lead author of the study. "In the mouse model, our team has been able to show that MCB-613 decreases damaging remodeling when given within hours after a myocardial infarction, thereby inhibiting the subsequent development of heart failure."

Researchers had previously discovered and characterized MCB-613 as a small molecule stimulator for SRCs. The family of SRCs are responsible for cellular plasticity and cell growth pathways during both normal and abnormal tissue growth. After a heart attack, the damaged tissue scars. This results in tissue loss and increased inflammation, fibrosis and a progressive decrease in cardiac function, all of which are hallmarks of myocardial infarction-induced heart failure.

The molecule works by stimulating SRC-3, thus initiating a complex cascade of events in tissue repair and modulation of the inflammatory response. O'Malley and his team also found that after treating the mice model with MCB-613, there were no significant signs of toxicity.

"The clinical implications of this discovery are significant. I have cared for many patients with advanced heart failure, and if we can modulate the natural history of this disease at all, we will lessen the No. 1 cause of human death and avoid a significant amount of human suffering," said Dr. Clifford Dacso, professor of molecular and cellular biology and medicine.

"Our findings show us that this molecule acts directly on heart tissue repair and regeneration after a severe heart attack; however, more studies are needed to fully understand the safety and efficacy before we are able to use this as a therapy in humans," O'Malley said.

"Our study shows promise to address the unmet need for treatments to prevent damage to heart tissue following a heart attack. These findings pave the way for discovery of additional treatments to target chronic heart disease progression," said Dr. Lisa Mullany, assistant professor of molecular and cellular biology and first author on the study.

"This is a remarkable discovery that may lead to an effective and safe treatment to prevent the progression to heart failure after a heart attack. Heart failure is a devastating disease that is more lethal than all cancers combined, and currently there are no definitive therapies other than heart transplantation. MCB-613 is a great candidate to help solve this huge clinical problem," said Dr. James Martin, Vivian L. Smith professor of regenerative medicine, molecular physiology and biophysics.
Others who took part in the study include Drs. Aarti D. Rohira, David Lonard, Jong H. Kim, Tanner O. Monroe, Andrea R. Ortiz, Brittany Stork, M. Waleed Gaber, Poonam Sarkar, Andrew G. Sikora, Todd K. Rosengart, Brian York, Yongcheng Song, all with Baylor, and Dr. John P. Leach with the University of Pennsylvania. O'Malley, Mullany and Dacso are members of the Dan L Duncan Comprehensive Cancer Center at Baylor.

Baylor College of Medicine

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to