Efficient and durable perovskite solar cell materials

November 24, 2020

Perovskite solar cells are attracting attention as the next-generation solar battery material thanks to their low processing cost and excellent photovoltaic quality. However, it is difficult to commercialize them because their key material - perovskite - is vulnerable to light and moisture.

Recently, a POSTECH research team has developed an organic spacer molecular additive that can improve both the photoelectric efficiency and stability of perovskite.

A POSTECH research team led by Professor Kilwon Cho and Ph.D. candidate Sungwon Song of the Department of Chemical Engineering has succeeded in fabricating perovskite solar cells that are highly efficient and stable by drastically reducing the concentration of internal defects in the crystals as well as increasing the moisture resistance of perovskite by introducing a new organic spacer molecule additive in the perovskite crystal. The study was published as a cover paper in the latest issue of Advanced Energy Materials, one of the most authoritative journals in the field of energy.

By adding organic spacer ions to solve the problem, the research team developed a hybrid perovskite photovoltaic layer where two- and three-dimensional perovskite coexist. Organic spacers create two-dimensional perovskite structures on the surface of 3D perovskite crystals. These structures act as stabilizing layer that increases resistance to moisture due to its property of repelling water.

In addition, it was discovered for the first time that this newly introduced organic spacer minimizes mechanical stress of the two- and three-dimensional perovskite crystal interfaces, thus promoting the nuclear production and growth of the 3D perovskite crystal. As a result, the internal defects of the photoreactive layer - the 3D perovskite crystals - have been dramatically reduced.

The solar cells developed by the research team achieved 21.3 % efficiency and secured moisture stability to maintain more than 80% of their initial efficiency even after 500 hours under 60% of relative humidity conditions.

"This study has presented a new perspective on organic spacer molecular design for the realization of high performing and stable perovskite solar cells," remarked Professor Kilwon Cho who led the study. He added, "It is anticipated to be a source technology that can contribute to the commercialization of perovskite solar cell technology."
The research was conducted with the support from the Center for Advanced Soft Electronics under the Global Frontier Research Program of the Ministry of Science and ICT of Korea.

Pohang University of Science & Technology (POSTECH)

Related Crystals Articles from Brightsurf:

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Fat crystals trigger chronic inflammation
A congenital disorder of the fat metabolism can apparently cause chronic hyperreaction of the immune system.

First ever observation of 'time crystals' interacting
For the first time ever, scientists have witnessed the interaction of a new phase of matter known as 'time crystals'.

'Blinking" crystals may convert CO2 into fuels
Imagine tiny crystals that ''blink'' like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels.

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Rubies on sapphire: Recipe for making crystals in flux
The effect of the holding temperature and solubility curve of rubies was elucidated, for Al2O3:Cr in MoO3 from 1050 to 1200.

Transparency discovered in crystals with ultrahigh piezoelectricity
Use of an AC rather than a DC electric field can improve the piezoelectric response of a crystal.

New photonic liquid crystals could lead to next-generation displays
A new technique to change the structure of liquid crystals could lead to the development of fast-responding liquid crystals suitable for next generation displays -- 3D, augmented and virtual reality -- and advanced photonic applications such as mirrorless lasers, bio-sensors and fast/slow light generation, according to an international team of researchers from Penn State, the Air Force Research Laboratory and the National Sun Yat-sen University, Taiwan.

The secret behind crystals that shrink when heated
Scientists at Brookhaven Lab have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.

Engineered protein crystals make cells magnetic
If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields.

Read More: Crystals News and Crystals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.