Molecular Basis Of Leading Genetic Cause Of Infant Death Discovered

November 24, 1998

Understanding how genetic information is translated, via messenger RNA (mRNA), to correctly construct proteins has profound clinical and basic research implications. Researchers at the University of Pennsylvania Medical Center have now found a link between this basic biological process and spinal muscular atrophy, the leading genetic cause of infant death. This neuromuscular disease, characterized by the degeneration of motor nerve cells that control the body's involuntary muscles from the head down, originates from defects in the Survival of Motor Neuron (SMN) gene on chromosome 5. Spinal muscle atrophy is an inherited condition that affects about one in 6,000.

"Our work describes the function of the SMN protein and links it to spinal muscle atrophy, opening up the possibility to search for therapeutics," reports Gideon Dreyfuss, Ph.D., the Isaac Norris professor of biochemistry and biophysics and a Howard Hughes Medical Institute investigator. Reduced levels or mutations in the SMN protein lead to spinal muscle atrophy. Dreyfuss and his colleagues -- Penn researchers Livio Pellizzoni, Bernard Charroux, and Naoyuki Kataoka -- discovered that SMN has a novel function that is essential for all cells to produce mRNA. Motor neurons appear to be particularly sensitive to defects in SMN, so much so that a deficiency in SMN leads to the death of these cells and results in the atrophy of the muscles they control.

The group's findings will be published in tomorrow's issue of Cell. A full-page photo of a human cell whose nuclear structures have been drastically affected by a mutant SMN protein is featured on the cover of the journal.

"This paper is an important step towards an effective treatment for spinal muscle atrophy," states Kenneth H. Fischbeck, MD, chief of the Neurogenetics Branch at the National Institute of Neurological Disease and Stroke and a former Penn neurologist. "Now scientists will be able to work back from the biochemistry of the disease to eventually design new therapies."

The findings demonstrate that the SMN protein plays a crucial role in the genesis of mRNA from a precursor called pre-mRNA. The conversion of pre-mRNA to mRNA takes place in the cell nucleus in a process called splicing. It is a critical step in the pathway of gene expression, and ultimately, in the production of a functional protein.

This genetic splicing is analogous to splicing a film together--getting the right sequence, cutting out the unnecessary parts, and putting it back together in the right order. "Obviously, this splicing process needs to operate efficiently and with high fidelity," explains Dreyfuss. "A complex molecular machine assembles on each pre-mRNA to carry out the splicing process. This is a modular splicing machine that is re-used repeatedly, cycle after cycle. It is comprised of many proteins and of small specialized particles called snRNPs. Our research shows that SMN and its entourage of helper proteins are required for the proper form and function of snRNPs and for maintaining the splicing machine in an active form so that it can be used for multiple rounds of splicing."

In cells of patients with spinal muscle atrophy, the splicing process is drastically compromised. Human motor neurons contain some of the highest concentrations of snRNPs, as well as SMN, of any cells in the body. When there is a deficiency of SMN, the motor neurons appear to be the first cells to suffer, and cell death eventually results.

As part of this work, the team has re-created the biochemical activity of SMN in a test tube. "This should make it possible to directly search for compounds that may enhance or substitute for SMN's activity, and thus serve as potential drugs for treating spinal muscle atrophy," adds Dreyfuss.
-end-
Note: Dr. Dreyfuss can be reached directly at 215-898-0398 or gdreyfuss@hhmi.upenn.edu.

The University of Pennsylvania Medical Center's sponsored research ranks third in the United States, based on grant support from the National Institutes of Health, the primary funder of biomedical research in the nation. In federal fiscal year 1997, the medical center received $175 million. News releases from the medical center are available to reporters by direct E-mail, fax, or U.S. mail, upon request. They are also posted to the center's website (http://www.med.upenn.edu); EurekAlert! (http://www.eurekalert.org), a resource sponsored by the American Association for the Advancement of Science; and Newswise (http://www.newswise.com).



University of Pennsylvania School of Medicine

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.