Ovary gene may explain certain aspects of infertility

November 25, 2002

Boston--December 2, 2002--Harvard Medical School researchers have uncovered an ovary gene whose absence from mouse egg cells produced severe pregnancy complications. The gene, Fmn2, which produces the protein formin-2, is similar in mice and humans and offers promise for understanding embryo loss, birth defects, and infertility in women. The study appears in the December Nature Cell Biology.

"As humans we are incredibly bad at producing eggs with the normal number of chromosomes, which is the leading cause of pregnancy loss in women," says Benjamin Leader, an HMS MD/PhD candidate, and the paper's lead author. "The biological means for ensuring proper distribution of chromosomes to the egg has been difficult to determine.

"Our study shows that the formin-2 gene is required in order to ensure the proper distribution of chromosomes to the egg. About one percent of women suffer from recurrent pregnancy loss, which can be defined as a loss of greater than two or three pregnancies. We are now actively searching for mutations involving the formin-2 gene in women with reproductive loss and infertility," Leader added.

Egg cells lacking Fmn2 were unable to complete the first round of reproductive cell division, known as meiosis I. The egg cell failed to correctly position a significant protein-DNA, the metaphase spindle, thereby halting the division process. The result was lack of formation of the first polar body, a new cell that signifies completion of the first meiotic division, and the daughter egg cell, which would otherwise develop into a mature egg.

Leader observed that Fmn2-deficient female mice produced embryos with three or five sets of chromosomes, a deviation that resulted in cell death. Normal mice with Fmn2 produce embryos with two sets of chromosomes. The researchers also found that healthy ovaries transplanted into Fmn2-deficient females rescued pregnancy loss, whereas transplant of Fmn2-deficient ovaries into healthy females destroyed the healthy females' ability to produce offspring. Furthermore, examination of the experimental mice revealed a radically reduced number of embryos in Fmn2-deficient females.
-end-
This research was supported in part by the Howard Hughes Medical Institute and a Howard Hughes Medical Institute pre-doctoral fellowship grant.

Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School's Boston quadrangle or in one of 47 academic departments at 17 affiliated teaching hospitals and research institutes. Those HMS affiliated institutions include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Hospital, Center for Blood Research, Children's Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

Harvard Medical School

Related Chromosomes Articles from Brightsurf:

Cancer's dangerous renovations to our chromosomes revealed
Cancer remodels the architecture of our chromosomes so the disease can take hold and spread, new research reveals.

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.

Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.

New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.

Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.

Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.

How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.

Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.

Read More: Chromosomes News and Chromosomes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.