Tidy knots are faster

November 25, 2013

Viruses are as simple as they are "smart": too elementary to be able to reproduce by themselves, they exploit the reproductive "machinery" of cells, by inserting pieces of their own DNA so that it is transcribed by the host cell. To do this, they first have to inject their own genetic material into the cells they infect. An international team of researchers, including Cristian Micheletti from SISSA (the International School for Advanced Studies in Trieste), has studied how this occurs and how long it takes for this process to be completed.

Micheletti and colleagues constructed a computer model of viral DNA and then simulated the release of genetic material from the viral capsid into the host cell nucleus. Far from being a fluid process, this ejection is subject to frictional forces that depend on the conformation of the DNA strand. "Fluidity of the process depends on how and how tightly the viral DNA is entangled", explains Micheletti. "The more topologically ordered is the double strand of the genome, the faster it is ejected from the virus. The situation is somewhat similar to the behaviour of an anchor line that has been correctly coiled: when the anchor is thrown overboard, the line uncoils neatly without stops or jerks due to tangles."

DNA has an intrinsic characteristic that makes its pattern of spontaneous arrangement very singular. Because it has two strands, DNA has a tendency to form highly ordered coils, just like anchor lines or thread spools. This isn't the case with generic polymers, which form complex and chaotic tangles. The simulations by Micheletti and colleagues compared the behaviour of a model strand of DNA and a simple strand of generic polymer. "In 95% of cases the model DNA slid through the exit pore of the virus much faster than the simple polymer, as a result of the greater spontaneous order of its conformation", comments Micheletti. "The simple strands may be even ten times slower than the DNA strands. Another interesting thing is that, although much more slowly, the simple strands in our observations always succeeded in leaving the virus completely. By contrast, in a small minority of cases, the DNA remained totally blocked, and this too is related to its tendency to form a spool that may sometimes present such complex torus knots - i.e., doughnut-like - to completely block ejection from the virus".

The process timescales observed by Micheletti and colleagues are perfectly consistent with empirical observations, "including all cases of complete DNA stalling that have been reported, though not explained, in some experiments", concludes Micheletti. "Our study, which estimated the time it takes viral DNA to leave the capsid in relation to its length and degree of packing could provide the starting point for designing artificial viral vectors".
-end-
The study has just been published in the Proceedings of the National Academy of Sciences (PNAS), and the authors include, in addition to Micheletti, Davide Marenduzzo from the University of Edinburgh, Enzo Orlandini from the University of Padua, and De Witt Sumners from the Florida State University.

International School of Advanced Studies (SISSA)

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.