A step closer to composite-based electronics

November 25, 2013

Composite materials are of increasing interest to physicists. Typically, they are made of electrically conducting elements - such as spherical metallic or elongated carbon particles - embedded in an insulating glass or a polymer matrix. Their controllable electrical resistivity, combined with their light and flexible properties, makes them suited for applications in flexible electronics. Now, a theoretical model, confirmed experimentally, elucidates how electrical resistivity varies with the concentration of the particles in these composite materials. These findings, by Isaac Balberg and colleagues from the Hebrew University in Jerusalem, have been published in EPJB.

To understand the dependence of resistivity on the concentration of the electrically conducting particles, the authors apply percolation theory. It provides a map for the number and size of clusters of adjacent particles as the concentration of particles increases. In this study, the authors note that the resistances involved in the electrical conduction can have a given discrete series of values unlike a single one or a continuous distribution found in many previous works.

Balberg and colleagues made the theoretical prediction - and proved experimentally using granular metal and carbon-black composites - that the dependence of the electrical resistance on the conducting particle concentration is manifested by a staircase. This was particularly obvious in nanometric scale systems, in which there is a well-defined discrete series of distances between a particle and its neighbours. Each stair exhibits a universal behaviour - independent of the details of the system - predicted by percolation theory. The electrical resistivity associated with subsequent stairs decreases as the concentration of the conducting particles increases.

This work was also able to shed light on many previously unexplained data related to characteristics of various types of composites, such as those containing carbon nanotubes or graphene.

Balberg et al. (2013), The percolation staircase model and its manifestation in composite materials, European Physical Journal B, DOI 10.1140/epjb/e2013-40200-7

For more information visit: http://www.epj.org

The full-text article is available to journalists on request.


Related Composite Materials Articles from Brightsurf:

New composite material revs up pursuit of advanced electric vehicles
Scientists at Oak Ridge National Laboratory used new techniques to create a composite that increases the electrical current capacity of copper wires, providing a new material that can be scaled for use in ultra-efficient, power-dense electric vehicle traction motors.

Analyzing pros and cons of two composite manufacturing methods
Airplane wings and wind turbine blades are typically created using bulk polymerization in composite manufacturing facilities.

Visualization of functional components to characterize optimal composite electrodes
Researchers have developed a visualization method that will determine the distribution of components in battery electrodes using atomic force microscopy.

Study suggests polymer composite could serve as lighter, non-toxic radiation shielding
A new study suggests that a polymer compound embedded with bismuth trioxide particles holds tremendous potential for replacing conventional radiation shielding materials, such as lead.

Scientists develop stable luminescent composite material based on perovskite nanocrystals
An international team of scientists that includes researchers from ITMO University has developed a new composite material based on perovskite nanocrystals for the purpose of creating miniature light sources with improved output capacity.

Composite metal foams take the heat, move closer to widespread applications
Engineering researchers have demonstrated that composite metal foams (CMFs) can pass so-called 'simulated pool fire testing' with flying colors, moving the material closer to use in applications such as packaging and transportation of hazardous materials.

Using holograms helps in studying the quality of composite materials
Composite materials have a complicated structure and specified mechanical or physical properties.

Scientists develop a composite membrane for long-life zinc-based flow batteries
Researchers led by Profs. LI Xianfeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences recently developed a composite membraneĀ for long-life zinc-based flow batteries.

An early warning system for damage in composite materials
A team at the National Institute of Standards and Technology (NIST) has developed a tool to monitor changes in widely used composite materials known as fiber reinforced polymers (FRPs), which can be found in everything from aerospace and infrastructure to wind turbines.

Novel composite antimicrobial film could take a bite out of foodborne illnesses
A novel composite film -- created by the bonding of an antimicrobial layer to conventional, clear polyethylene plastic typically used to vacuum-package foods such as meat and fish -- could help to decrease foodborne illness outbreaks, according to researchers in Penn State's College of Agricultural Sciences.

Read More: Composite Materials News and Composite Materials Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.