Nav: Home

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted in rats exposed to cocaine, the researchers mapped out the network of circuits that cause wild firing of neurons that produce dopamine, a neurotransmitter that regulates movement and emotion. The findings also help explain how cocaine use eventually leads to desensitization.

The researchers used tracer molecules to follow electrical activity in the brain in rats exposed to cocaine. They found that a hub of neurons in the extended amygdala (the brain's motivation/learning center) acts as a relay between activation of the ventral subiculum (the brain's addiction center) and the hyperactive release of dopamine.

Over time, increasing activation of a key part of the extended amygdala--the bed nucleus of the stria terminalis produces a long-lasting increase in signal transmission onto neurons that produce dopamine so that the rats became desensitized to the cocaine. Since this change happens within the amygdala, it may explain some of the long-term effects on behavior and motivation that occur after prolonged cocaine use.

"Unraveling the neuronal circuit and characterizing the synaptic mechanisms by which the ventral subiculum alters the excitability of dopamine neurons is a necessary first step in understanding the resulting behavioral changes induced by cocaine," says senior author François Georges of Bordeaux University in France. "We show that the ventral subiculum recruits the bed nucleus of the stria terminalis to drive a persistent hyperactivity of dopamine neurons and control cocaine-induced activity."

Surprisingly, a single stimulation of the ventral subiculum (which lasts about 10 minutes in an anesthetized rat) had the same impact on the brain and dopamine neurons as a massive injection of cocaine. These effects lasted up to five days and raise the possibility that dopamine-producing neurons can be changed so that they respond differently to stimuli.

In addition to providing insights on the circuits involved in drug addiction, the findings might be helpful for understanding and even changing the perception of natural rewards; for example, those related to food or exercise, which the authors plan to pursue next.
-end-
This work was supported by grants from Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Agence Nationale de la Recherche, Atip-Avenir, the City of Paris, and the European Research Council.

Cell Reports, Glangetas and Fois et al.: "Ventral Subiculum Stimulation Promotes Persistent Hyperactivity of Dopamine Neurons and Facilitates Behavioral Effects of Cocaine" http://dx.doi.org/10.1016/j.celrep.2015.10.076

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. For more information, please visit http://www.cell.com/cell-reports. To receive media alerts for Cell Press journals, contact press@cell.com.

Cell Press

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...