Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles C. Y. Xu from the University of Notre Dame and colleagues.

Noninvasive genetic sampling enables biomonitoring without the need to directly observe or disturb target organisms. The authors of this study used three black widow spiders fed house crickets to noninvasively extract, amplify, and sequence mitochondrial DNA from their spider web samples, which identified both the spider and its prey to species.

The detectability of spider DNA did not differ between assays and spider and prey DNA remained detectable at least 88 days after living organisms were no longer present on the web. The authors suggest that these results may encourage further studies that could lead to practical applications in conservation research, pest management, biogeography studies, and biodiversity assessments. However, further testing of field-collected spider webs from more species and habitats is needed to evaluate the generality of these findings.

Charles Cong Xu says: "Sticky spider webs are natural DNA samplers, trapping nearby insects and other things blowing in the wind. We see potential for broad environmental monitoring because spiders build webs in so many places."
-end-
In your coverage please use this URL to provide access to the freely available paper: http://dx.plos.org/10.1371/journal.pone.0142503

Citation: Xu CCY, Yen IJ, Bowman D, Turner CR (2015) Spider Web DNA: A New Spin on Noninvasive Genetics of Predator and Prey. PLoS ONE 10(11): e0142503. doi:10.1371/journal.pone.0142503

Image Credit: Scott Camazine

Funding: Funding for this work came from the University of Notre Dame through the laboratory of Dr. David Lodge to support CCYX's independent undergraduate research. CRT was supported by NSF IGERT grant award #0504495 to the GLOBES graduate training program at the University of Notre Dame. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: CRT is currently a scientist in a commercial company, ecoSystem Genetics, which specializes in genetic and genomic analysis of environmental mixtures for ecosystem monitoring. CRT did not receive funding from ecoSystem Genetics while this study was conducted. There are no relevant patents, products in development, or marketed products to declare. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

PLOS

Related Spider Articles from Brightsurf:

Tapping secrets of Aussie spider's unique silk
The basket-web spider, which is found only in Australia, has revealed it not only weaves a unique lobster pot web but that its silk has elasticity and a gluing substance, that creates a high degree of robustness.

A new species of spider
During a research stay in the highlands of Colombia conducted as part of her doctorate, Charlotte Hopfe, PhD student at the University of Bayreuth, has discovered and zoologically described a new species of spider.

Flies and mosquitoes beware, here comes the slingshot spider
Running into an unseen spiderweb in the woods can be scary enough, but what if you had to worry about a spiderweb - and the spider - being catapulted at you?

Spider monkey groups as collective computers
New research shows that spider monkeys use collective computation to figure out the best way to find food.

Spider silk made by photosynthetic bacteria
A research team in Japan reported that they succeeded in producing the spider silk -- ultra-lightweight, though, biodegradable and biocompatible material -- using photosynthetic bacteria.

Spider silk can create lenses useful for biological imaging
Spider silk is useful for a variety of biomedical applications: It exhibits mechanical properties superior to synthetic fibers for tissue engineering, and it is not toxic or harmful to living cells.

Spider baby boom in a warmer Arctic
Climate change leads to longer growing seasons in the Arctic.

Spider combs tame unruly nanofibers (video)
Cribellate spiders spin thousands of tiny nanofibers into sticky threads.

New study reveals a life aquatic for many spider species
Researchers at the California Academy of Sciences and William Paterson University found that nearly one fifth of all spider families are associated with saltwater or freshwater aquatic habitats.

The mathematics of prey detection in spider orb-webs
Spider webs are one of nature's most fascinating manifestations. Many spiders extrude proteinaceous silk to weave sticky webs that ensnare unsuspecting prey who venture into their threads.

Read More: Spider News and Spider Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.