York research points to enhanced detection of Parkinson's

November 25, 2015

New research by biologists at the University of York could lead to improved methods of detection for early-onset Parkinson's Disease (PD).

Recording the responses of fruit flies (Drosophila melanogaster) to different visual patterns, using methods adapted from the study of vision in humans, scientists in York's Department of Biology investigated the nervous systems of flies with different types of Parkinson's mutations.

Funded by the Wellcome Trust, researchers compared flies carrying mutations associated with early-onset Parkinson's with 'normal' control flies, and found increased neuronal activity to stimulation in the former group in 'young' flies.

By mapping the visual responses of fruit flies with different Parkinson's genes, the scientists built a substantial data bank of results. Using this they were able to classify unknown flies as having a Parkinson's related mutation with 85 per cent accuracy.

Researchers believe it may be possible to transfer this method back to the clinic where early changes in vision may provide a 'biomarker' allowing screening for Parkinson's before the onset of traditional motor-symptoms. Therefore, profiling human visual responses could prove an accurate and reliable test in diagnosing people with early-onset PD.

This method is also likely to succeed when transferred to human detection of Parkinson's, as visual profiling in humans has proved accurate in the past in detecting genetic markers. In this study, as more complex light stimulations have been used, a more accurate picture of detecting a wider variety of different genetic markers has been revealed.

Dr Ryan West, Postdoctoral Research Scientist in York's Department of Biology and Lead Author on the study, said: "Increased visual activity in young fruit flies with early-onset Parkinson's mutations is a significant finding, as it may provide an early-onset biomarker for people at risk of Parkinson's.

"Using 64 different combinations of visual stimuli, we now have a comprehensive bank of the reactions of fruit flies carrying different genetic mutations. We can see that fruit flies carrying different mutations have distinct patterns of visual responses, suggesting this is a reliable method in classifying Parkinson's genotypes.

"We hope this method may be translatable to the clinic where changes in vision may provide an early indication of early-onset Parkinson's. Such early detection is essential if we are to understand disease progression and develop novel therapeutics."
-end-


University of York

Related Fruit Flies Articles from Brightsurf:

Sestrin makes fruit flies live longer
Researchers identify positive effector behind reduced food intake.

Circular RNA makes fruit flies live longer
The molecule influences the insulin signalling pathway and thus prolongs life

Fruit flies respond to rapid changes in the visual environment
Researchers have discovered a mechanism employed by the fruit fly Drosophila melanogaster that broadens our understanding of visual perception.

How fruit flies flock together in orderly clusters
Opposing desires to congregate and maintain some personal space drive fruit flies to form orderly clusters, according to a study published today in eLife.

Fruit flies help in the development of personalized medicine
It is common knowledge that there is a connection between our genes and the risk of developing certain diseases.

Fruit flies' microbiomes shape their evolution
In just five generations, an altered microbiome can lead to genome-wide evolution in fruit flies, according to new research led researchers at the University of Pennsylvania.

Why fruit flies eat practically anything
Kyoto University researchers uncover why some organisms can eat anything -- 'generalists -- and others have strict diets -- 'specialists'.

Why so fly: MU scientists discover some fruit flies learn better than others
Fruit flies could one day provide new avenues to discover additional genes that contribute to a person's ability to learn and remember.

Fruit flies find their way by setting navigational goals
Navigating fruit flies do not have the luxury of GPS, but they do have a kind of neural compass.

Tolerance to stress is a 'trade-off' as fruit flies age
With the help of the common fruit fly (D. melanogaster), which ages quickly because it only lives about 60 days, FAU neuroscientists provide insights into healthy aging by investigating the effects of a foraging gene on age and stress tolerance.

Read More: Fruit Flies News and Fruit Flies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.