Nav: Home

Physicists spell 'AV' by manipulating Abrikosov vortices

November 25, 2016

A nanophotonics group lead by Prof. Brahim Lounis of the University of Bordeaux and including scientists from MIPT has performed a unique experiment involving the optical manipulation of individual Abrikosov vortices in a superconductor. In their article published in Nature Communications, the scientists mention the possibility of designing new logic units based on quantum principles for use in supercomputers.

The phenomenon of superconductivity, or zero electrical resistance, occurs in certain materials in the temperature range from -273 to -70 degrees Celsius. When a material transitions into the superconducting state, the magnetic flux fields are expelled from its volume. A superconductor either has all magnetic field lines ejected from its interior or allows partial penetration of the magnetic field.

The phenomenon of partial penetration was explained in 1957 by Alexei Abrikosov, for which he was awarded the 2003 Nobel Prize in Physics. A material that does not exhibit complete magnetic field expulsion is referred to as a type-II superconductor. Abrikosov also demonstrated that these superconductors can only be penetrated by discrete magnetic flux units: one magnetic flux quantum at a time. As the field within a superconductor grows stronger, this gives rise to the cylindrical current loops known as Abrikosov vortices.

"Type-II superconductors are used everywhere: from medicine to energetics and other industries. Their properties are determined by the 'vortex matter,' which makes research into vortices and finding ways to manipulate them very important for modern physics," says Ivan Veshchunov, one of the authors of the study and a researcher at the Laboratory of Topological Quantum Phenomena in Superconducting Systems at MIPT.

To manipulate Abrikosov vortices, the scientists used a focused laser beam. This kind of optical vortex control is made possible by the tendency of the vortices to be attracted toward the higher-temperature regions in a superconductor (in this case, a niobium film cooled to -268 degrees Celsius). The necessary hotspots can be created by heating the material with a laser. However, it is crucial to set the right laser power, as overheating the material destroys its superconducting properties.

Because the vortices act as magnetic flux quanta, they can be used to shape the overall magnetic flux profile, enabling physicists to perform various experiments with superconductors. While a triangular vortex lattice occurs naturally in certain magnetic fields, other types of lattices (and devices like vortex lenses) can be created by moving vortices around.

According to the authors of the study, their proposed method of vortex manipulation could be used in quantum computation to open up an entirely new field of research devoted to the development of optically controlled rapid single flux quantum (RSFQ) logic elements. This technology is seen as the most promising in terms of the design of superfast memory for quantum computers. RSFQ-based logic elements are already used in digital-to-analog and analog-to-digital converters, high-precision magnetometers, and memory cells. A number of prototype computers based on this technology have been developed including the FLUX-1 designed by a team of US engineers. However, the RSFQ logic elements in these computers are mostly controlled by electrical impulses. Optically controlled logic is one of the emerging trends in superconducting systems.

The experiments performed by the scientists serve as a proof of concept for an approach that could be used in future research into Abrikosov vortices. Physicists have yet to investigate the details of how increased temperature acts to "unpin" the vortices from their sites and bring them into motion. More research into vortex dynamics in Abrikosov lattices is likely to follow. This line of research is critical for our understanding of the physics of superconductors, as well as assessing the prospects for fundamentally new types of microelectronics components.

Moscow Institute of Physics and Technology

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...